针对基于shapelets转换的时间序列分类方法中候选shapelets存在较大相似性的问题,提出一种基于多样化top-k shapelets转换的分类方法 Div Top KShapelet。该方法采用多样化top-k查询技术,去除相似shapelets,并筛选出最具代表性的k个shap...针对基于shapelets转换的时间序列分类方法中候选shapelets存在较大相似性的问题,提出一种基于多样化top-k shapelets转换的分类方法 Div Top KShapelet。该方法采用多样化top-k查询技术,去除相似shapelets,并筛选出最具代表性的k个shapelets集合,最后以最优shapelets集合为特征对数据集进行转换,达到提高分类准确率及时间效率的目的。实验结果表明,Div Top KShapelet分类方法不仅比传统分类方法具有更高的准确率,而且与使用聚类筛选的方法(Cluster Shapelet)和shapelets覆盖的方法(Shapelet Selection)相比,分类准确率最多提高了48.43%和32.61%;同时在所有15个数据集上均有计算效率的提升,最少加速了1.09倍,最高可达到287.8倍。展开更多
文摘针对基于shapelets转换的时间序列分类方法中候选shapelets存在较大相似性的问题,提出一种基于多样化top-k shapelets转换的分类方法 Div Top KShapelet。该方法采用多样化top-k查询技术,去除相似shapelets,并筛选出最具代表性的k个shapelets集合,最后以最优shapelets集合为特征对数据集进行转换,达到提高分类准确率及时间效率的目的。实验结果表明,Div Top KShapelet分类方法不仅比传统分类方法具有更高的准确率,而且与使用聚类筛选的方法(Cluster Shapelet)和shapelets覆盖的方法(Shapelet Selection)相比,分类准确率最多提高了48.43%和32.61%;同时在所有15个数据集上均有计算效率的提升,最少加速了1.09倍,最高可达到287.8倍。