期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于评分缓存的节点序空间下BN结构学习
1
作者 高晓光 +2 位作者 王紫东 刘晓寒 冯奇 《系统工程与电子技术》 EI CSCD 北大核心 2024年第12期4091-4107,共17页
针对大规模贝叶斯网络结构学习容易陷入局部最优的问题,提出一种节点序空间下迭代局部搜索算法。在局部搜索环节,设计评分缓存的选择插入算子和次优解的容忍策略,评估自适应的纵向插入邻域,攻克由盲目搜索导致的邻域受限问题。在迭代重... 针对大规模贝叶斯网络结构学习容易陷入局部最优的问题,提出一种节点序空间下迭代局部搜索算法。在局部搜索环节,设计评分缓存的选择插入算子和次优解的容忍策略,评估自适应的纵向插入邻域,攻克由盲目搜索导致的邻域受限问题。在迭代重启环节,采用等价类结构和深度优先遍历的转换机制,避免由随机扰动导致的评分退化问题。通过相融实验分别验证搜索和迭代算法的有效性。实验结果表明,相较于现有的主流方法,迭代局部搜索算法能够精确地学习大规模网络结构。 展开更多
关键词 贝叶斯网络 结构学习 节点序 局部搜索 迭代重启
下载PDF
基于深度置信网络效能拟合的火控系统精度全局敏感性分析
2
作者 汪强龙 高晓光 +2 位作者 李新宇 万开方 《兵工学报》 EI CAS CSCD 北大核心 2024年第10期3430-3444,共15页
针对当前航空火控系统的精度研究对数据完备性要求较高,且仅能分析系统内单误差源影响因素的问题,提出一种全新的基于深度置信网络(Deep Belief Network,DBN)效能拟合的火控系统精度全局敏感性分析(Global Sensitivity Analysis via Dee... 针对当前航空火控系统的精度研究对数据完备性要求较高,且仅能分析系统内单误差源影响因素的问题,提出一种全新的基于深度置信网络(Deep Belief Network,DBN)效能拟合的火控系统精度全局敏感性分析(Global Sensitivity Analysis via Deep Belief Network,GSADBN)算法。从全局敏感性分析算法的优劣点出发,分析传统的全局敏感性分析算法在不完备数据下存在的局限性。利用DBN优异的特征提取能力,并采用无监督训练和有监督微调相结合的算法,搭建并训练火控系统效能拟合模型。研究结果表明:与传统Sobol算法、经典傅里叶振幅敏感性检验(Fourier Amplitude Sensitivity Test,FAST)算法以及最新的基于贝叶斯网络的Sobol(Bayesian Neural Sobol,BNSobol)算法相比,GSADBN算法不仅可以满足精度要求,同时还可以在不完备数据下达到传统算法在完备数据下精度分析的效果;该算法可以在火控系统不完备数据下取得较好的精度分析结果,同时在设计火控系统各模块时,给出精度方面的合理方案,从而为火控系统的设计及作战效能的提高提供参考和理论支撑。 展开更多
关键词 航空火控系统 深度置信网络 GSADBN算法 精度评估 全局敏感性分析
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部