In this Letter, we present an electrically tunable holographic waveguide display(HWD) based on two slanted holographic polymer dispersed liquid crystal(HPDLC) gratings. Experimental results show that a see-through eff...In this Letter, we present an electrically tunable holographic waveguide display(HWD) based on two slanted holographic polymer dispersed liquid crystal(HPDLC) gratings. Experimental results show that a see-through effect is obtained in the HWD that both the display light from HWD and the ambient light can be clearly seen simultaneously. By applying an external electric field, the output intensity of the display light can be modulated,which is attributed to the field-induced rotation of the liquid crystal molecules in the two HPDLC gratings.We also show that this electrically tunable performance enables the HWD to adapt to different ambient light conditions. This study provides some ideas towards the development of HWD and its application in augmented reality.展开更多
基金supported by the Youth Innovation Promotion Association,Chinese Academy of Sciences(Nos.2018251 and 2017264)the National Natural Science Foundation of China(Nos.11704378 and 61705221)
文摘In this Letter, we present an electrically tunable holographic waveguide display(HWD) based on two slanted holographic polymer dispersed liquid crystal(HPDLC) gratings. Experimental results show that a see-through effect is obtained in the HWD that both the display light from HWD and the ambient light can be clearly seen simultaneously. By applying an external electric field, the output intensity of the display light can be modulated,which is attributed to the field-induced rotation of the liquid crystal molecules in the two HPDLC gratings.We also show that this electrically tunable performance enables the HWD to adapt to different ambient light conditions. This study provides some ideas towards the development of HWD and its application in augmented reality.