火山岩的气孔构造记录了岩浆中挥发性气体出溶、膨胀和逃逸的过程。通过对火山岩气孔特征的详细研究,有助于了解岩浆源区的挥发份含量和岩浆的上升喷发过程。目前用来研究火山岩中气孔的方法普遍存在耗时费力、采集气孔数据较少、易破...火山岩的气孔构造记录了岩浆中挥发性气体出溶、膨胀和逃逸的过程。通过对火山岩气孔特征的详细研究,有助于了解岩浆源区的挥发份含量和岩浆的上升喷发过程。目前用来研究火山岩中气孔的方法普遍存在耗时费力、采集气孔数据较少、易破坏样品等问题。本文在通过计算机断层扫描(工业CT)技术获取玄武岩投影数据的基础上,使用商用软件VG Studio MAX对样品进行三维重构和气孔体积测量,再由开源软件ImageJ对CT切片作图像处理和二维形态学运算,同时开发程序代码批量处理CT切片,快速获取气孔的含量及大小分布情况。结果表明:南海玄武岩样品在三维空间中的气孔体积分数为12.32%,大小分布呈现出对数正态分布的特点,等效球直径和最大外接圆直径分别集中分布在180~200μm、340~360μm的区间内。剖面上二维切片中的气孔含量有较大变化,但各个数值围绕体积分数波动的幅度不大,并且与气孔数密度呈显著的正相关关系。同时,通过改进海底环境下火山岩中挥发份质量分数的计算方法,得到该样品气孔体积全部转换为CO2或H2O的质量分数分别为0.233%、0.099%。研究认为,工业CT扫描结合图像处理软件可以实现火山岩气孔的无损快速统计和分析,该方法有望提高火山岩中气孔数量、体积以及挥发份含量的计算精度,为研究火山岩成因及其岩浆过程提供帮助。展开更多
文摘火山岩的气孔构造记录了岩浆中挥发性气体出溶、膨胀和逃逸的过程。通过对火山岩气孔特征的详细研究,有助于了解岩浆源区的挥发份含量和岩浆的上升喷发过程。目前用来研究火山岩中气孔的方法普遍存在耗时费力、采集气孔数据较少、易破坏样品等问题。本文在通过计算机断层扫描(工业CT)技术获取玄武岩投影数据的基础上,使用商用软件VG Studio MAX对样品进行三维重构和气孔体积测量,再由开源软件ImageJ对CT切片作图像处理和二维形态学运算,同时开发程序代码批量处理CT切片,快速获取气孔的含量及大小分布情况。结果表明:南海玄武岩样品在三维空间中的气孔体积分数为12.32%,大小分布呈现出对数正态分布的特点,等效球直径和最大外接圆直径分别集中分布在180~200μm、340~360μm的区间内。剖面上二维切片中的气孔含量有较大变化,但各个数值围绕体积分数波动的幅度不大,并且与气孔数密度呈显著的正相关关系。同时,通过改进海底环境下火山岩中挥发份质量分数的计算方法,得到该样品气孔体积全部转换为CO2或H2O的质量分数分别为0.233%、0.099%。研究认为,工业CT扫描结合图像处理软件可以实现火山岩气孔的无损快速统计和分析,该方法有望提高火山岩中气孔数量、体积以及挥发份含量的计算精度,为研究火山岩成因及其岩浆过程提供帮助。