Through-silicon-via (TSV) to TSV crosstalk noise is one of the key factors affecting the signal integrity of three- dimensional integrated circuits (3D ICs). Based on the frequency dependent equivalent electrical ...Through-silicon-via (TSV) to TSV crosstalk noise is one of the key factors affecting the signal integrity of three- dimensional integrated circuits (3D ICs). Based on the frequency dependent equivalent electrical parameters for the TSV channel, an analytical crosstalk noise model is established to capture the TSV induced crosstalk noise. The impact of various design parameters including insulation dielectric, via pitch, via height, silicon conductivity, and terminal impedance on the crosstalk noise is analyzed with the proposed model. Two approaches are proposed to alleviate the TSV noise, namely, driver sizing and via shielding, and the SPICE results show 241 rnV and 379 mV reductions in the peak noise voltage, respectively.展开更多
Based on the 65nm CMOS process,a novel parallel RLC coupling interconnect analytical model is presented synthetically considering parasitical capacitive and parasitical inductive effects. Applying function approximati...Based on the 65nm CMOS process,a novel parallel RLC coupling interconnect analytical model is presented synthetically considering parasitical capacitive and parasitical inductive effects. Applying function approximation and model order-reduction to the model, we derive a closed-form and time-domain waveform for the far-end crosstalk of a victim line under ramp input transition. For various interconnect coupling sizes, the proposed RLC coupling analytical model enables the estimation of the crosstalk voltage within 2.50% error compared with Hspice simulation in a 65nm CMOS process. This model can be used in computer-aided-design of nanometer SOCs.展开更多
Repeater optimization is the key for SOC (System on Chip) interconnect delay design. This paper proposes a novel optimal model for minimizing power and area overhead of repeaters while meeting the target performance...Repeater optimization is the key for SOC (System on Chip) interconnect delay design. This paper proposes a novel optimal model for minimizing power and area overhead of repeaters while meeting the target performance of on-chip interconnect lines. It also presents Lagrangian function to find the number of repeaters and their sizes required for minimizing area and power overhead with target delay constraint. Based on the 65 nanometre CMOS technology, the computed results of the intermediate and global lines show that the proposed model can significantly reduce area and power of interconnected lines, and the better performance will be achieved with the longer line. The results compared with the reference paper demonstrate the validity of this model. It can be integrated into repeater design methodology and CAD (computer aided design) tool for interconnect planning in nanometre SOC.展开更多
Based on a stochastic wire length distributed model, the interconnect distribution of a three-dimensional integrated circuit (3D IC) is predicted exactly. Using the results of this model, a global interconnect desig...Based on a stochastic wire length distributed model, the interconnect distribution of a three-dimensional integrated circuit (3D IC) is predicted exactly. Using the results of this model, a global interconnect design window for a giga-scale system-on-chip (SOC) is established by evaluating the constraints of 1) wiring resource, 2) wiring bandwidth, and 3) wiring noise. In comparison to a two-dimensional integrated circuit (2D IC) in a 130-nm and 45-nm technology node, the design window expands for a 3D IC to improve the design reliability and system performance, further supporting 3D IC application in future integrated circuit design.展开更多
Metallic carbon nanotubes (CNTs) have been proposed as a promising alternative to Cu interconnects in future integrated circuits (ICs) for their remarkable conductive, mechanical and thermal properties. Compact eq...Metallic carbon nanotubes (CNTs) have been proposed as a promising alternative to Cu interconnects in future integrated circuits (ICs) for their remarkable conductive, mechanical and thermal properties. Compact equiv alent circuit models for single-walled carbon nanotube (SWCNT) bundles are described, and the performance of SWCNT bundle interconnects is evaluated and compared with traditional Cu interconnects at different interconnect levels for through-silicon-via-based three dimensional (3D) ICs. It is shown that at a local level, CNT interconnects exhibit lower signal delay and smaller optimal wire size. At intermediate and global levels, the delay improvement becomes more significant with technology scaling and increasing wire lengths. For 1 mm intermediate and 10 mm global level interconnects, the delay of SWCNT bundles is only 49.49% and 52.82% that of the Cu wires, respec tively.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61131001,61322405,61204044,61376039,and 61334003)
文摘Through-silicon-via (TSV) to TSV crosstalk noise is one of the key factors affecting the signal integrity of three- dimensional integrated circuits (3D ICs). Based on the frequency dependent equivalent electrical parameters for the TSV channel, an analytical crosstalk noise model is established to capture the TSV induced crosstalk noise. The impact of various design parameters including insulation dielectric, via pitch, via height, silicon conductivity, and terminal impedance on the crosstalk noise is analyzed with the proposed model. Two approaches are proposed to alleviate the TSV noise, namely, driver sizing and via shielding, and the SPICE results show 241 rnV and 379 mV reductions in the peak noise voltage, respectively.
文摘多电压设计是应对SoC功耗挑战的一种有效方法,但会带来线长、面积等的开销。为减少线长、芯片的空白面积及提高速度,提出了一种改进的固定边框多电压布图方法.对基于NPE(Normalized Polish Expression)表示的布图解,采用形状曲线相加算法来计算其最优的布图实现,并通过增量计算方法来减少计算NPE及多电压分配的时间.为使所得布图解满足给定的边框约束,提出了一个考虑固定边框约束的目标函数,并采用删除后插入(Insertion after Delete,IAD)算子对SA求得布图解进行后优化.实验结果表明,和已有方法相比,所提出方法在线长和空白面积率方面有较明显优势,且所有电路在不同高宽比、不同电压岛数下均实现了极低的空白面积率(<<1%).
文摘Based on the 65nm CMOS process,a novel parallel RLC coupling interconnect analytical model is presented synthetically considering parasitical capacitive and parasitical inductive effects. Applying function approximation and model order-reduction to the model, we derive a closed-form and time-domain waveform for the far-end crosstalk of a victim line under ramp input transition. For various interconnect coupling sizes, the proposed RLC coupling analytical model enables the estimation of the crosstalk voltage within 2.50% error compared with Hspice simulation in a 65nm CMOS process. This model can be used in computer-aided-design of nanometer SOCs.
基金supported by the National Natural Science Foundation of the China (Grant Nos 60676009 and 60776034)the Doctor Foundation of Ministry of Education of China (Grant No 20050701015)the National Outstanding Young Scientist Foundation of China (Grant No 60725415)
文摘Repeater optimization is the key for SOC (System on Chip) interconnect delay design. This paper proposes a novel optimal model for minimizing power and area overhead of repeaters while meeting the target performance of on-chip interconnect lines. It also presents Lagrangian function to find the number of repeaters and their sizes required for minimizing area and power overhead with target delay constraint. Based on the 65 nanometre CMOS technology, the computed results of the intermediate and global lines show that the proposed model can significantly reduce area and power of interconnected lines, and the better performance will be achieved with the longer line. The results compared with the reference paper demonstrate the validity of this model. It can be integrated into repeater design methodology and CAD (computer aided design) tool for interconnect planning in nanometre SOC.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60725415 and 60676009)the Natural Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2009ZX01034-002-001-005)
文摘Based on a stochastic wire length distributed model, the interconnect distribution of a three-dimensional integrated circuit (3D IC) is predicted exactly. Using the results of this model, a global interconnect design window for a giga-scale system-on-chip (SOC) is established by evaluating the constraints of 1) wiring resource, 2) wiring bandwidth, and 3) wiring noise. In comparison to a two-dimensional integrated circuit (2D IC) in a 130-nm and 45-nm technology node, the design window expands for a 3D IC to improve the design reliability and system performance, further supporting 3D IC application in future integrated circuit design.
基金supported by the National Natural Science Foundation of China(Nos.61234002,61006028,61204044)the National High-Tech Program of China(Nos.2012AA012302,2013AA011203)
文摘Metallic carbon nanotubes (CNTs) have been proposed as a promising alternative to Cu interconnects in future integrated circuits (ICs) for their remarkable conductive, mechanical and thermal properties. Compact equiv alent circuit models for single-walled carbon nanotube (SWCNT) bundles are described, and the performance of SWCNT bundle interconnects is evaluated and compared with traditional Cu interconnects at different interconnect levels for through-silicon-via-based three dimensional (3D) ICs. It is shown that at a local level, CNT interconnects exhibit lower signal delay and smaller optimal wire size. At intermediate and global levels, the delay improvement becomes more significant with technology scaling and increasing wire lengths. For 1 mm intermediate and 10 mm global level interconnects, the delay of SWCNT bundles is only 49.49% and 52.82% that of the Cu wires, respec tively.