作为预测太阳活动的重要依据,太阳黑子的麦金托什(McIntosh)分类由于其中某些类别与耀斑爆发有着紧密联系而应用广泛。随着数据量的快速增加,自动化进行太阳黑子的麦金托什分类已成为迫切需求。使用太阳动力学观测站(Solar Dynamics Obs...作为预测太阳活动的重要依据,太阳黑子的麦金托什(McIntosh)分类由于其中某些类别与耀斑爆发有着紧密联系而应用广泛。随着数据量的快速增加,自动化进行太阳黑子的麦金托什分类已成为迫切需求。使用太阳动力学观测站(Solar Dynamics Observatory, SDO)上的日震与磁场成像仪(Helioseismic and Magnetic Imager, HMI)提供的720s-SHARP(Spaceweather HMI Active Region Patch, SHARP)系列数据产品和美国国家海洋和大气管理局(National Oceanic and Atmospheric Administration, NOAA)提供的太阳区域摘要(The Solar Region Summary, SRS)信息作为用于麦金托什分类的图像数据来源和标签数据来源,首先在仅有7年数据Sharp数据库基础上进行扩充,建立一个完整太阳周期(时间跨度为12年)且经过数据清洗的有效太阳黑子newSharp数据库;其次根据太阳黑子图像的特征,采取一系列如按活动区分配数据等预处理操作,并证明其科学性和必要性;最终使用卷积神经网络(Convolutional Neural Network, CNN)中4种经典的分类神经网络模型将Sharp和newSharp进行麦金托什(McIntosh)分类对比实验。实验结果表明,newSharp相比于Sharp,除了数据量有显著提高,同时有效样本的加入和无效样本的清洗使得大部分类别的加权F1分数有所提升,少类的加权F1分数实现0的突破;其中McIntosh-p的加权F1分数整体提升最大,验证了建立完整可靠的数据库和使用科学合理的实验方法的有效性,能较好实现自动化且端到端地处理实际观测到太阳黑子图像的麦金托什分类任务。展开更多
A prototype of a solar ground-layer adaptive optics (GLAO) system, which consists of a multi-direction corre- lating Shack-Hartmann wavefront sensor with 30 effective subapertures and about a 1 arcmin field of view ...A prototype of a solar ground-layer adaptive optics (GLAO) system, which consists of a multi-direction corre- lating Shack-Hartmann wavefront sensor with 30 effective subapertures and about a 1 arcmin field of view (FoV) in each subaperture, a deformable mirror with 151 actuators conjugated to the telescope entrance pupil, and a custom-built real-time controller based on field-programmable gate array and multi-core digital signal processor (DSP), is implemented at the 1 m New Vacuum Solar Telescope at Fuxian Solar Observatory and saw its first light on January 12th, 2016. The on-sky observational results show that the solar image is apparently improved in the whole FoV over 1 arcmin with the GLAO correction.展开更多
文摘作为预测太阳活动的重要依据,太阳黑子的麦金托什(McIntosh)分类由于其中某些类别与耀斑爆发有着紧密联系而应用广泛。随着数据量的快速增加,自动化进行太阳黑子的麦金托什分类已成为迫切需求。使用太阳动力学观测站(Solar Dynamics Observatory, SDO)上的日震与磁场成像仪(Helioseismic and Magnetic Imager, HMI)提供的720s-SHARP(Spaceweather HMI Active Region Patch, SHARP)系列数据产品和美国国家海洋和大气管理局(National Oceanic and Atmospheric Administration, NOAA)提供的太阳区域摘要(The Solar Region Summary, SRS)信息作为用于麦金托什分类的图像数据来源和标签数据来源,首先在仅有7年数据Sharp数据库基础上进行扩充,建立一个完整太阳周期(时间跨度为12年)且经过数据清洗的有效太阳黑子newSharp数据库;其次根据太阳黑子图像的特征,采取一系列如按活动区分配数据等预处理操作,并证明其科学性和必要性;最终使用卷积神经网络(Convolutional Neural Network, CNN)中4种经典的分类神经网络模型将Sharp和newSharp进行麦金托什(McIntosh)分类对比实验。实验结果表明,newSharp相比于Sharp,除了数据量有显著提高,同时有效样本的加入和无效样本的清洗使得大部分类别的加权F1分数有所提升,少类的加权F1分数实现0的突破;其中McIntosh-p的加权F1分数整体提升最大,验证了建立完整可靠的数据库和使用科学合理的实验方法的有效性,能较好实现自动化且端到端地处理实际观测到太阳黑子图像的麦金托什分类任务。
基金supported by the National Natural Science Foundation of China(No.11178004)the Laboratory Innovation Foundation of the Chinese Academy of Sciences(No.YJ15K007)
文摘A prototype of a solar ground-layer adaptive optics (GLAO) system, which consists of a multi-direction corre- lating Shack-Hartmann wavefront sensor with 30 effective subapertures and about a 1 arcmin field of view (FoV) in each subaperture, a deformable mirror with 151 actuators conjugated to the telescope entrance pupil, and a custom-built real-time controller based on field-programmable gate array and multi-core digital signal processor (DSP), is implemented at the 1 m New Vacuum Solar Telescope at Fuxian Solar Observatory and saw its first light on January 12th, 2016. The on-sky observational results show that the solar image is apparently improved in the whole FoV over 1 arcmin with the GLAO correction.