In order to study the technology on cyclotron design,and to carry out researches on the crucial parts including the main magnet,beam diagnostics and engineering technology to accomplish the experimental verification o...In order to study the technology on cyclotron design,and to carry out researches on the crucial parts including the main magnet,beam diagnostics and engineering technology to accomplish the experimental verification of the 100MeV high intensity cyclotron and to pave the way for further increasing the current of the proton beam,a series of work has been done in succession since 2004,which highlights the research,design and fabrication of some of the critical parts.The technical requirement for each part has been reached consecutively.At present,all the work has been integrated into a set of comprehensive device,CRM Cyclotron,which is actually a test stand for high intensity cyclotron development.This report will lay emphasis on the following:the CRM Cyclotron design and fabrication of relevant equipment,magnetic field mapping and shimming,10—15mA H- ion source,experimental research on RF cavity and injection system,beam commissioning on the internal target system,etc.展开更多
The Central Region Model(CRM)is a compact H^- cyclotron.Because of the intrinsic asymmetry of the magnet,its machining and assembly are very complicated.To guarantee the magnet field distribution,it is necessary to me...The Central Region Model(CRM)is a compact H^- cyclotron.Because of the intrinsic asymmetry of the magnet,its machining and assembly are very complicated.To guarantee the magnet field distribution,it is necessary to measure and shim the magnetic field.This paper presents a study on the design and use of the mapping system based on the Hall Effect and the re-machining of shimming bars after analyzing the magnetic field measurement data to achieve the isochronous field and good vertical focusing frequency.The method to effectively reduce the amplitude of the 1st harmonic by shimming bars ls also introduced.展开更多
A 100MeV compact high intensity H-cyclotron is under design and construction at CIAE which will provide a 75MeV—100MeV,200μA proton beam.The main magnet of this cyclotron adopts an integrally compact structure with ...A 100MeV compact high intensity H-cyclotron is under design and construction at CIAE which will provide a 75MeV—100MeV,200μA proton beam.The main magnet of this cyclotron adopts an integrally compact structure with a fixed field and four sectors,while the hill gap is constantly changeable.This paper reviews the design features of the magnet,numerical simulation results,the inner defects of the magnet including the carbon content segregation and shrinkage porosity,factors related to mechanical design including the tolerance and deformation.The latest progress will also be reported in this paper.展开更多
The first medical high intensity cyclotron CYCIAE-30 and its beam line for the isotope production were built in 1994 at China Institute of Atomic Energy.Now,an upgrading beam line system is designed based on the exist...The first medical high intensity cyclotron CYCIAE-30 and its beam line for the isotope production were built in 1994 at China Institute of Atomic Energy.Now,an upgrading beam line system is designed based on the existing beam line of CYCIAE-30 to transport the beam extracted from the cyclotron to a gas target for the new isotope production,including elements location design,optics simulation and magnet design.The machining and installation of all the elements are accomplished based on the design.The beam tuning is finished and the transmission of 96.5% is obtained.展开更多
The design and construction of Beijing Radioactive Ion-beam Facility (BRIF) was started at China Institute of Atomic Energy -CIAE) in 2004. In this project, a 100 MeV high intensity cyclotron, CYCIAE100, is selected a...The design and construction of Beijing Radioactive Ion-beam Facility (BRIF) was started at China Institute of Atomic Energy -CIAE) in 2004. In this project, a 100 MeV high intensity cyclotron, CYCIAE100, is selected as a driving accelerator for radioactive ion beam production. It will provide a proton beam of 75—100 MeV with an intensity of 200—500 μA. The scheme adopted in this design, i.e., stripping the accelerated H-, makes the structure more compact and construction cost much lower. At present, the design for each system has been accomplished. This paper depicts the basic physics design of the machine, including its major structure and parameters, beam dynamics and each relevant system, e.g. basic structure of the main magnet, numerical simulation of the RF resonant cavity, axial injection system, central region, and study on crucial physics problems concerning the extraction and beam lines. The major problems encountered during the design of CYCIAE-100 are also summarized in this paper.展开更多
Cusp source is one of the essential elements in high density cyclotron,whose properties have a great impact on the extracted beam of the cyclotron.The article introduces the design and machining of the H-cusp source a...Cusp source is one of the essential elements in high density cyclotron,whose properties have a great impact on the extracted beam of the cyclotron.The article introduces the design and machining of the H-cusp source applied to the high intensity proton beam cyclotron.By investigating deeply the technology of high intensity plasma production, long life DC filament emission of electrons,magnetic confinement,electron filtering,residual gas and electron extraction control,we designed a new cusp source with an average beam density of 15—20mA based on the 10mA H-cusp source at CIAE.展开更多
The vertical focusing is one of the primary problems in the central region of cyclotrons. This focusing effect brought about by the magnetic field is inclined to be weak near the center of the machine due to the fact ...The vertical focusing is one of the primary problems in the central region of cyclotrons. This focusing effect brought about by the magnetic field is inclined to be weak near the center of the machine due to the fact that the flutter is small, while the electric focusing forces incurred from the dee gaps become very strong. Since the electric focusing effect is dependent on the RF phase, we have proceeded to carry out analytical calculations and numerical simulation about the vertical focusing in the central region of CYCIAE100, including magnetic focusing, electric focusing and the defocusing effect from the space charge effect. All the results have been used for the design of the central region for CYCIAE-100 and a good vertical focusing has been obtained.展开更多
A 100 MeV H- compact cyclotron is under construction at China Institute of Atomic Energy (CYCIAE-100). The proton beams of 75 MeV-100 MeV at an intensity of 200 μA will be extracted in dual opposite directions by cha...A 100 MeV H- compact cyclotron is under construction at China Institute of Atomic Energy (CYCIAE-100). The proton beams of 75 MeV-100 MeV at an intensity of 200 μA will be extracted in dual opposite directions by charge exchange stripping devices. The crossing point at the switching magnet center is fixed inside the magnet yoke and the stripping points for various extraction energies are calculated by the code CYCTRS. With the code GOBLIN, we can calculate the transfer matrix including the dispersion effects from the stripping point to the switch magnet. The beam distribution just after stripping foil can be obtained from the multi-particle tracking code COMA and the extracted beam parameters after the switch magnet such as emittance, envelope, dispersion, energy spread, bunch length, etc. are given by the extraction orbit simulations.展开更多
The accelerators should be properly designed to make the radiation field produced by beam loss satisfy the dose limits. The radiation field for high intensity H- cyclotron includes prompt radiation and residual radiat...The accelerators should be properly designed to make the radiation field produced by beam loss satisfy the dose limits. The radiation field for high intensity H- cyclotron includes prompt radiation and residual radiation field. The induced radioactivity in accelerator components is the dominant source of occupational radiation exposure if the accelerator is well shielded. The source of radiation is the beam loss when cyclotron is operating. In this paper, the radiation field for CYCIAE-100 is calculated using Monte Carlo method and the radioactive contamination near stripping foil is studied. A method to reduce the dose equivalent rate of maintenance staff is also given.展开更多
A 75—100 MeV H- compact cyclotron CYCIAE-100 is being constructed at China Institute of Atomic Energy (CIAE). About 200 μA proton beam will be provided by CYCIAE-100. The imperfection of magnetic fields will remarka...A 75—100 MeV H- compact cyclotron CYCIAE-100 is being constructed at China Institute of Atomic Energy (CIAE). About 200 μA proton beam will be provided by CYCIAE-100. The imperfection of magnetic fields will remarkably affect the acceleration orbit and beam envelope in CYCIAE-100. The effects to the accelerating beam by the imperfection fields, especially the field components Br on the mid-plane will be analyzed in detail with tracking code COMA. Poles misalignment that causes magnetic imperfection will be described in the paper. According to the simulation results, the tolerance of the poles machining and assembly will be illustrated in this paper.展开更多
文摘In order to study the technology on cyclotron design,and to carry out researches on the crucial parts including the main magnet,beam diagnostics and engineering technology to accomplish the experimental verification of the 100MeV high intensity cyclotron and to pave the way for further increasing the current of the proton beam,a series of work has been done in succession since 2004,which highlights the research,design and fabrication of some of the critical parts.The technical requirement for each part has been reached consecutively.At present,all the work has been integrated into a set of comprehensive device,CRM Cyclotron,which is actually a test stand for high intensity cyclotron development.This report will lay emphasis on the following:the CRM Cyclotron design and fabrication of relevant equipment,magnetic field mapping and shimming,10—15mA H- ion source,experimental research on RF cavity and injection system,beam commissioning on the internal target system,etc.
文摘The Central Region Model(CRM)is a compact H^- cyclotron.Because of the intrinsic asymmetry of the magnet,its machining and assembly are very complicated.To guarantee the magnet field distribution,it is necessary to measure and shim the magnetic field.This paper presents a study on the design and use of the mapping system based on the Hall Effect and the re-machining of shimming bars after analyzing the magnetic field measurement data to achieve the isochronous field and good vertical focusing frequency.The method to effectively reduce the amplitude of the 1st harmonic by shimming bars ls also introduced.
文摘A 100MeV compact high intensity H-cyclotron is under design and construction at CIAE which will provide a 75MeV—100MeV,200μA proton beam.The main magnet of this cyclotron adopts an integrally compact structure with a fixed field and four sectors,while the hill gap is constantly changeable.This paper reviews the design features of the magnet,numerical simulation results,the inner defects of the magnet including the carbon content segregation and shrinkage porosity,factors related to mechanical design including the tolerance and deformation.The latest progress will also be reported in this paper.
文摘The first medical high intensity cyclotron CYCIAE-30 and its beam line for the isotope production were built in 1994 at China Institute of Atomic Energy.Now,an upgrading beam line system is designed based on the existing beam line of CYCIAE-30 to transport the beam extracted from the cyclotron to a gas target for the new isotope production,including elements location design,optics simulation and magnet design.The machining and installation of all the elements are accomplished based on the design.The beam tuning is finished and the transmission of 96.5% is obtained.
文摘The design and construction of Beijing Radioactive Ion-beam Facility (BRIF) was started at China Institute of Atomic Energy -CIAE) in 2004. In this project, a 100 MeV high intensity cyclotron, CYCIAE100, is selected as a driving accelerator for radioactive ion beam production. It will provide a proton beam of 75—100 MeV with an intensity of 200—500 μA. The scheme adopted in this design, i.e., stripping the accelerated H-, makes the structure more compact and construction cost much lower. At present, the design for each system has been accomplished. This paper depicts the basic physics design of the machine, including its major structure and parameters, beam dynamics and each relevant system, e.g. basic structure of the main magnet, numerical simulation of the RF resonant cavity, axial injection system, central region, and study on crucial physics problems concerning the extraction and beam lines. The major problems encountered during the design of CYCIAE-100 are also summarized in this paper.
文摘Cusp source is one of the essential elements in high density cyclotron,whose properties have a great impact on the extracted beam of the cyclotron.The article introduces the design and machining of the H-cusp source applied to the high intensity proton beam cyclotron.By investigating deeply the technology of high intensity plasma production, long life DC filament emission of electrons,magnetic confinement,electron filtering,residual gas and electron extraction control,we designed a new cusp source with an average beam density of 15—20mA based on the 10mA H-cusp source at CIAE.
文摘The vertical focusing is one of the primary problems in the central region of cyclotrons. This focusing effect brought about by the magnetic field is inclined to be weak near the center of the machine due to the fact that the flutter is small, while the electric focusing forces incurred from the dee gaps become very strong. Since the electric focusing effect is dependent on the RF phase, we have proceeded to carry out analytical calculations and numerical simulation about the vertical focusing in the central region of CYCIAE100, including magnetic focusing, electric focusing and the defocusing effect from the space charge effect. All the results have been used for the design of the central region for CYCIAE-100 and a good vertical focusing has been obtained.
文摘A 100 MeV H- compact cyclotron is under construction at China Institute of Atomic Energy (CYCIAE-100). The proton beams of 75 MeV-100 MeV at an intensity of 200 μA will be extracted in dual opposite directions by charge exchange stripping devices. The crossing point at the switching magnet center is fixed inside the magnet yoke and the stripping points for various extraction energies are calculated by the code CYCTRS. With the code GOBLIN, we can calculate the transfer matrix including the dispersion effects from the stripping point to the switch magnet. The beam distribution just after stripping foil can be obtained from the multi-particle tracking code COMA and the extracted beam parameters after the switch magnet such as emittance, envelope, dispersion, energy spread, bunch length, etc. are given by the extraction orbit simulations.
文摘The accelerators should be properly designed to make the radiation field produced by beam loss satisfy the dose limits. The radiation field for high intensity H- cyclotron includes prompt radiation and residual radiation field. The induced radioactivity in accelerator components is the dominant source of occupational radiation exposure if the accelerator is well shielded. The source of radiation is the beam loss when cyclotron is operating. In this paper, the radiation field for CYCIAE-100 is calculated using Monte Carlo method and the radioactive contamination near stripping foil is studied. A method to reduce the dose equivalent rate of maintenance staff is also given.
文摘A 75—100 MeV H- compact cyclotron CYCIAE-100 is being constructed at China Institute of Atomic Energy (CIAE). About 200 μA proton beam will be provided by CYCIAE-100. The imperfection of magnetic fields will remarkably affect the acceleration orbit and beam envelope in CYCIAE-100. The effects to the accelerating beam by the imperfection fields, especially the field components Br on the mid-plane will be analyzed in detail with tracking code COMA. Poles misalignment that causes magnetic imperfection will be described in the paper. According to the simulation results, the tolerance of the poles machining and assembly will be illustrated in this paper.