移动对象的语义行为模式挖掘是当前移动对象研究中关注的热点,有益于诸多应用场景,如朋友推荐系统、轨迹破案领域和个性化服务等.目前语义行为模式挖掘方法没有考虑移动对象在停留点的停留时间,不能准确地分辨出移动对象之间的不同行为...移动对象的语义行为模式挖掘是当前移动对象研究中关注的热点,有益于诸多应用场景,如朋友推荐系统、轨迹破案领域和个性化服务等.目前语义行为模式挖掘方法没有考虑移动对象在停留点的停留时间,不能准确地分辨出移动对象之间的不同行为模式.为了解决上述问题,提出了一种基于停留时间的语义行为模式挖掘(discovering common behavior using staying duration on semantic trajectory,DSTra)方法,首先挖掘每个移动对象的频繁语义行为模式,然后定义语义行为模式之间的相似性度量方法,最后采用层次聚类的方法对移动对象进行聚类,找出具有相似行为模式的移动对象群体.实验结果表明:该方法不仅具有合理性和有效性,同时还具有较高的准确率和较好的效率.展开更多
定位技术的普遍应用,使得随时随地获取个人位置成为可能,进一步推动了基于位置的服务等新型应用的发展,产生了海量轨迹数据.精确的路网匹配对提高这些新型应用的服务质量具有重要的研究意义,然而受众多因素的影响,大部分轨迹的采样率较...定位技术的普遍应用,使得随时随地获取个人位置成为可能,进一步推动了基于位置的服务等新型应用的发展,产生了海量轨迹数据.精确的路网匹配对提高这些新型应用的服务质量具有重要的研究意义,然而受众多因素的影响,大部分轨迹的采样率较低,比如由签到类应用或低功耗设备生成的低采样轨迹,给路网匹配带来了巨大的挑战.研究基于偏好的个性化路网匹配(driving preference based personalized map-matching,简称DPMM),提出了在动态道路交通网络中的用户驾驶偏好模型.基于该模型,提出了两阶段路网匹配算法:局部匹配搜索用户最可能采用的几条局部Skyline路径;设计了全局匹配的动态规划算法,该算法返回在用户驾驶偏好下最可能的多条全局路径作为最终匹配结果.实验结果充分表明,该方法是有效的和高效的,具有一定的使用价值.展开更多
文摘移动对象的语义行为模式挖掘是当前移动对象研究中关注的热点,有益于诸多应用场景,如朋友推荐系统、轨迹破案领域和个性化服务等.目前语义行为模式挖掘方法没有考虑移动对象在停留点的停留时间,不能准确地分辨出移动对象之间的不同行为模式.为了解决上述问题,提出了一种基于停留时间的语义行为模式挖掘(discovering common behavior using staying duration on semantic trajectory,DSTra)方法,首先挖掘每个移动对象的频繁语义行为模式,然后定义语义行为模式之间的相似性度量方法,最后采用层次聚类的方法对移动对象进行聚类,找出具有相似行为模式的移动对象群体.实验结果表明:该方法不仅具有合理性和有效性,同时还具有较高的准确率和较好的效率.
文摘定位技术的普遍应用,使得随时随地获取个人位置成为可能,进一步推动了基于位置的服务等新型应用的发展,产生了海量轨迹数据.精确的路网匹配对提高这些新型应用的服务质量具有重要的研究意义,然而受众多因素的影响,大部分轨迹的采样率较低,比如由签到类应用或低功耗设备生成的低采样轨迹,给路网匹配带来了巨大的挑战.研究基于偏好的个性化路网匹配(driving preference based personalized map-matching,简称DPMM),提出了在动态道路交通网络中的用户驾驶偏好模型.基于该模型,提出了两阶段路网匹配算法:局部匹配搜索用户最可能采用的几条局部Skyline路径;设计了全局匹配的动态规划算法,该算法返回在用户驾驶偏好下最可能的多条全局路径作为最终匹配结果.实验结果充分表明,该方法是有效的和高效的,具有一定的使用价值.