目的:克隆人CXCR3B基因,并构建含有该目的基因的真核表达载体,获得稳定表达人CXCR3B分子的基因转染细胞株L929-huCXCR3B。方法:采用PCR方法从pMD19-T/huCXCR3A质粒中扩增人CXCR3B基因,通过双酶切装入真核表达载体pIRES2-EGFP中;脂质体...目的:克隆人CXCR3B基因,并构建含有该目的基因的真核表达载体,获得稳定表达人CXCR3B分子的基因转染细胞株L929-huCXCR3B。方法:采用PCR方法从pMD19-T/huCXCR3A质粒中扩增人CXCR3B基因,通过双酶切装入真核表达载体pIRES2-EGFP中;脂质体法转染L929细胞,G418加压筛选阳性克隆;分别用RT-PCR方法与免疫荧光技术分析阳性克隆中人CXCR3B在mRNA和蛋白水平的表达。MTT分析基因转染细胞株L929-huCXCR3B在Mig(monokineinduced by IFN-γ,IFN-γ诱导的单核因子)作用下的增殖能力。结果:成功克隆了人CXCR3B基因并构建了真核表达载体pIRES2-EGFP/huCXCR3B,转染该载体后获得了稳定表达人CXCR3B的基因转染细胞株L929-huCXCR3B,膜表面CX-CR3B分子的阳性表达率为93%。该基因转染细胞与其配体Mig共培养24、48及72 h,抑制率分别为41.44%、44.01%和24.80%。结论:L929-huCXCR3B细胞株的建立为研究CXCR3B信号转导及制备相应的单克隆抗体(mAb)奠定了基础。展开更多
开发经济高效的析氧反应电催化剂对于推进可充电金属-空气电池和电解水技术的发展至关重要.一般来说,具有完整蜂窝结构的石墨碳基面是电化学惰性的,需要依赖缺陷或者掺杂结构诱导的电荷极化效应来提升催化活性.相比于基面,边缘位点具有...开发经济高效的析氧反应电催化剂对于推进可充电金属-空气电池和电解水技术的发展至关重要.一般来说,具有完整蜂窝结构的石墨碳基面是电化学惰性的,需要依赖缺陷或者掺杂结构诱导的电荷极化效应来提升催化活性.相比于基面,边缘位点具有特殊的局域电子态,为提升石墨碳电极的本征催化活性开辟了新的思路,然而其结构精准构筑目前仍面临极大挑战.本文以“人字形”多壁碳纳米管(H-MWCNTs)作为研究切入点,利用高温熔盐介质主导的插层剥离和截断效应,实现“边缘-平面位点”结构可控构筑,为实现高效电解水析氧反应(OER)提供了重要的结构基础.通过熔盐辅助热解方法可控制备了具有完全暴露的内外边缘平面的目标催化剂H-MWCNTs-MS,并研究其OER催化性能.在碱性介质中10 mA cm^(-2)电流密度所需过电位仅为236 mV,是目前报道的较好的非金属电催化剂.同时,H-MWCNTs-MS在10,50和100 mA cm^(-2)电流密度下均表现出较好的电化学稳定性.利用原位衰减全反射-表面增强红外吸收光谱(ATR-SEIRAS)技术研究了“边缘-平面位点”在OER过程中的结构重构过程,与理论计算分析的高能“边缘态”结果一致,并确定酮氧官能化位点为真实催化活性中心.理论计算结果表明,氧官能团修饰结构能够显著促进电荷的再分配,增强层间耦合作用,降低关键含氧中间体*OOH的形成能垒,加速OER反应动力学.此外,H-MWCNTs-MS的开放式结构极大程度提高了“边缘-平面位点”的利用率,减小的纳米管壁厚促进了层间电荷迁移,也是增强OER活性的关键要素.综上,精准构筑“边缘-平面位点”为开发高效石墨碳电极开辟了新的思路,通过原位谱学技术揭示边缘位点催化结构重构,能够进一步丰富研究者对于电催化协同效应的科学认识.展开更多
文摘目的:克隆人CXCR3B基因,并构建含有该目的基因的真核表达载体,获得稳定表达人CXCR3B分子的基因转染细胞株L929-huCXCR3B。方法:采用PCR方法从pMD19-T/huCXCR3A质粒中扩增人CXCR3B基因,通过双酶切装入真核表达载体pIRES2-EGFP中;脂质体法转染L929细胞,G418加压筛选阳性克隆;分别用RT-PCR方法与免疫荧光技术分析阳性克隆中人CXCR3B在mRNA和蛋白水平的表达。MTT分析基因转染细胞株L929-huCXCR3B在Mig(monokineinduced by IFN-γ,IFN-γ诱导的单核因子)作用下的增殖能力。结果:成功克隆了人CXCR3B基因并构建了真核表达载体pIRES2-EGFP/huCXCR3B,转染该载体后获得了稳定表达人CXCR3B的基因转染细胞株L929-huCXCR3B,膜表面CX-CR3B分子的阳性表达率为93%。该基因转染细胞与其配体Mig共培养24、48及72 h,抑制率分别为41.44%、44.01%和24.80%。结论:L929-huCXCR3B细胞株的建立为研究CXCR3B信号转导及制备相应的单克隆抗体(mAb)奠定了基础。
文摘开发经济高效的析氧反应电催化剂对于推进可充电金属-空气电池和电解水技术的发展至关重要.一般来说,具有完整蜂窝结构的石墨碳基面是电化学惰性的,需要依赖缺陷或者掺杂结构诱导的电荷极化效应来提升催化活性.相比于基面,边缘位点具有特殊的局域电子态,为提升石墨碳电极的本征催化活性开辟了新的思路,然而其结构精准构筑目前仍面临极大挑战.本文以“人字形”多壁碳纳米管(H-MWCNTs)作为研究切入点,利用高温熔盐介质主导的插层剥离和截断效应,实现“边缘-平面位点”结构可控构筑,为实现高效电解水析氧反应(OER)提供了重要的结构基础.通过熔盐辅助热解方法可控制备了具有完全暴露的内外边缘平面的目标催化剂H-MWCNTs-MS,并研究其OER催化性能.在碱性介质中10 mA cm^(-2)电流密度所需过电位仅为236 mV,是目前报道的较好的非金属电催化剂.同时,H-MWCNTs-MS在10,50和100 mA cm^(-2)电流密度下均表现出较好的电化学稳定性.利用原位衰减全反射-表面增强红外吸收光谱(ATR-SEIRAS)技术研究了“边缘-平面位点”在OER过程中的结构重构过程,与理论计算分析的高能“边缘态”结果一致,并确定酮氧官能化位点为真实催化活性中心.理论计算结果表明,氧官能团修饰结构能够显著促进电荷的再分配,增强层间耦合作用,降低关键含氧中间体*OOH的形成能垒,加速OER反应动力学.此外,H-MWCNTs-MS的开放式结构极大程度提高了“边缘-平面位点”的利用率,减小的纳米管壁厚促进了层间电荷迁移,也是增强OER活性的关键要素.综上,精准构筑“边缘-平面位点”为开发高效石墨碳电极开辟了新的思路,通过原位谱学技术揭示边缘位点催化结构重构,能够进一步丰富研究者对于电催化协同效应的科学认识.