针对固定步长最小均方(LMS,least mean square)算法以及变步长LMS算法在收敛速度与稳态误差性能方面的不足,本文提出了一种新的基于对数函数改进的LMS算法.由于该算法中不涉及指数的运算,使得算法的计算量大大下降,收敛速度更快.仿真结...针对固定步长最小均方(LMS,least mean square)算法以及变步长LMS算法在收敛速度与稳态误差性能方面的不足,本文提出了一种新的基于对数函数改进的LMS算法.由于该算法中不涉及指数的运算,使得算法的计算量大大下降,收敛速度更快.仿真结果表明,对数函数改进的LMS算法比基于反正切函数改进的LMS算法具有近似相同的稳态误差性能,然而本文算法收敛更快,速度平均提高1.5倍.并且比基于双曲正切函数改进的LMS算法中的稳态误差平均降低0.5倍,同时收敛速度平均提高1.0倍.展开更多
文摘针对固定步长最小均方(LMS,least mean square)算法以及变步长LMS算法在收敛速度与稳态误差性能方面的不足,本文提出了一种新的基于对数函数改进的LMS算法.由于该算法中不涉及指数的运算,使得算法的计算量大大下降,收敛速度更快.仿真结果表明,对数函数改进的LMS算法比基于反正切函数改进的LMS算法具有近似相同的稳态误差性能,然而本文算法收敛更快,速度平均提高1.5倍.并且比基于双曲正切函数改进的LMS算法中的稳态误差平均降低0.5倍,同时收敛速度平均提高1.0倍.