-
题名"将军饮马"问题的课堂作业设计
- 1
-
-
作者
郭梦敏
-
机构
广西桂林市第十八中学
-
出处
《中学数学教学参考》
2024年第11期70-72,共3页
-
文摘
1内容分析。"将军饮马"问题是人教版教材八年级上册第十三章"轴对称"的一个课题学习内容,教材借助轴对称探索等腰三角形和等边三角形的性质与判定,将图形的变化与性质有机整合;通过轴对称变换,将同侧两点到直线的距离之和最短路线问题转化为异侧两点到直线的距离之和最短问题,从而运用"两点之间,线段最短"进行求解。
-
关键词
轴对称变换
点到直线的距离
人教版教材
课题学习
等腰三角形
等边三角形
最短路线问题
将军饮马
-
分类号
G633.6
[文化科学—教育学]
-
-
题名数学情境教学中启“知”策略探讨
被引量:4
- 2
-
-
作者
李三平
郭梦敏
-
机构
陕西师范大学数学与信息科学学院
-
出处
《当代教师教育》
2016年第3期56-59,共4页
-
基金
陕西师范大学研究生教育教学改革研究项目(GERP-14-11)
陕西师范大学研究生教育教学改革研究项目(GERP-15-40)
陕西师范大学第三批信息化课程建设项目
-
文摘
在以"以境启知,以知怡情"为主要特点的数学情境教学中,数学"知"识的形成过程是连接"境"与"情"的关键环节。而有效地启"知"(即从情境化的问题到问题的知识化过程)策略主要为以下三个方面:启"知"前,创设情境立足教学任务;启"知"中,去情境化时渗透数学化思想;启"知"后,再情境化时注重数学应用。
-
关键词
知
数学情境教学
去情境化
数学化
-
Keywords
learning
situational teaching of mathematics
de-contextualization
the thinking of mathematization
-
分类号
G642.0
[文化科学—高等教育学]
-
-
题名对海德格尔“此在”概念的解读
被引量:1
- 3
-
-
作者
郭梦敏
-
机构
西安建筑科技大学思政院
-
出处
《科技创新导报》
2014年第21期246-246,共1页
-
文摘
"此在"提出的哲学问题是西方现代哲学中一个备受关注的焦点。只有人才能体现存在本身,并且在对存在的不断追问中获得自身的本质。海德格尔赋予这个特殊的存在者以特定的名称——"此在"。"此在总是我"和"此在的‘本质'在于它的存在是此在的两个基本性质。对"此在"概念的诠释,海德格尔是围绕"在世"来展开论述的。此在的日常在世是常人,常人为自身而在此,但常人自身确是一种平均状态,而不是本真的、自己掌握自己的此在自身;此在在世的展开方式是现身、领会和沉沦;畏和烦是此在的结构整体。
-
关键词
海德格尔
此在
在世
-
分类号
B516.54
[哲学宗教—外国哲学]
-