针对机场跑道异物(Foreign Object Debris,FOD)的小目标特点,提出一种基于改进YOLOv3的FOD目标检测算法。以YOLOv3网络为基础,采用运算复杂度相对更低的Darknet-49作为特征提取网络,并将检测尺度增加至4个,进行多尺度特征融合。使用基...针对机场跑道异物(Foreign Object Debris,FOD)的小目标特点,提出一种基于改进YOLOv3的FOD目标检测算法。以YOLOv3网络为基础,采用运算复杂度相对更低的Darknet-49作为特征提取网络,并将检测尺度增加至4个,进行多尺度特征融合。使用基于马尔科夫链蒙特卡罗采样(Markov Chain Monte Carlo sampling,MCMC)的K-means++算法对标注边界框尺寸信息进行聚类分析。训练时引入GIoU边界框回归损失函数。实验结果表明,改进的YOLOv3目标检测算法在满足实时性要求的情况下,精确率和召回率达到了95.3%和91.1%,与Faster R-CNN相比具有更高的检测速度,与SSD相比具有更高的检测精度,有效解决了原YOLOv3存在的定位精度偏低和漏检问题。展开更多
文摘针对机场跑道异物(Foreign Object Debris,FOD)的小目标特点,提出一种基于改进YOLOv3的FOD目标检测算法。以YOLOv3网络为基础,采用运算复杂度相对更低的Darknet-49作为特征提取网络,并将检测尺度增加至4个,进行多尺度特征融合。使用基于马尔科夫链蒙特卡罗采样(Markov Chain Monte Carlo sampling,MCMC)的K-means++算法对标注边界框尺寸信息进行聚类分析。训练时引入GIoU边界框回归损失函数。实验结果表明,改进的YOLOv3目标检测算法在满足实时性要求的情况下,精确率和召回率达到了95.3%和91.1%,与Faster R-CNN相比具有更高的检测速度,与SSD相比具有更高的检测精度,有效解决了原YOLOv3存在的定位精度偏低和漏检问题。