One main challenge for phosphate cathodes in sodium-ion batteries(SIBs)is to increase the working voltage and energy density to promote its practicability.Herein,an advanced Na3V2(PO4)2F3@C cathode is prepared success...One main challenge for phosphate cathodes in sodium-ion batteries(SIBs)is to increase the working voltage and energy density to promote its practicability.Herein,an advanced Na3V2(PO4)2F3@C cathode is prepared successfully for sodium-ion full cells.It is revealed that,carbon coating can not only enhance the electronic conductivity and electrode kinetics of Na3V2(PO4)2F3@C and inhibit the growth of particles(i.e.,shorten the Na^+-migration path),but also unexpectedly for the first time adjust the dis-/charging plateaux at different voltage ranges to increase the mean voltage(from 3.59 to 3.71 V)and energy density from 336.0 to 428.5 Wh kg^-1 of phosphate cathode material.As a result,when used as cathode for SIBs,the prepared Na3V2(PO4)2F3@C delivers much improved electrochemical properties in terms of larger specifc capacity(115.9 vs.93.5 mAh g^-1),more outstanding high-rate capability(e.g.,87.3 vs.60.5 mAh g^-1 at 10 C),higher energy density,and better cycling performance,compared to pristine Na3V2(PO4)2F3.Reasons for the enhanced electrochemical properties include ionicity enhancement of lattice induced by carbon coating,improved electrode kinetics and electronic conductivity,and high stability of lattice,which is elucidated clearly through the contrastive characterization and electrochemical studies.Moreover,excellent energy-storage performance in sodium-ion full cells further demonstrate the extremely high possibility of Na3V2(PO4)2F3@C cathode for practical applications.展开更多
Constructing potential anodes for sodium-ion batteries(SIBs)with a wide temperature property has captured enormous interests in recent years.Fe1-xS,a zero-band gap material confirmed by density states calculation,is a...Constructing potential anodes for sodium-ion batteries(SIBs)with a wide temperature property has captured enormous interests in recent years.Fe1-xS,a zero-band gap material confirmed by density states calculation,is an ideal electrode for fast energy storage on account of its low cost and high theoretical capacity.Herein,Fe1-xS nanosheet wrapped by nitrogen-doped carbon(Fe1-xS@NC)is engineered through a post-sulfidation strategy using Fe-based metal-organic framework(Fe-MOF)as the precursor.The obtained Fe1-xS@NC agaric-like structure can well shorten the charge diffusion pathway,and significantly enhance the ionic/electronic conductivities and the reaction kinetics.As expected,the Fe1-xS@NC electrode,as a prospective SIB anode,delivers a desirable capacity up to 510.2 mA h g^-1 at a high rate of8000 mA g^-1.Additionally,even operated at low temperatures of 0 and-25°C,high reversible capacities of 387.1 and 223.4 mA h g^-1 can still be obtained at 2000 mA g^-1,respectively,indicating its huge potential use at harsh temperatures.More noticeably,the full battery made by the Fe1-xS@NC anode and Na3 V2(PO4)2 O2 F cathode achieves a remarkable rate capacity(186.8 mA h g^-1 at 2000 m A g^-1)and an impressive cycle performance(183.6 m A h g^-1 after 100 cycles at700 mA g^-1)between 0.3 and 3.8 V.Such excellent electrochemical performance is mainly contributed by its pseudocapacitive-dominated behavior,which brings fast electrode kinetics and robust structural stability to the whole electrode.展开更多
Although graphite anodes operated with representative de/intercalation patterns at low potentials are considered highly desirable for K-ion batteries,the severe capacity fading caused by consecutive reduction reaction...Although graphite anodes operated with representative de/intercalation patterns at low potentials are considered highly desirable for K-ion batteries,the severe capacity fading caused by consecutive reduction reactions on the aggressively reactive surface is inevitable given the scarcity of effective protecting layers.Herein,by introducing a flame-retardant localized high-concentration electrolyte with retentive solvation configuration and relatively weakened anion-coordination and non-solvating fluorinated ether,the rational solid electrolyte interphase characterized by well-balanced inorganic/organic components is tailored in situ.This effectively prevented solvents from excessively decomposing and simultaneously improved the resistance against K-ion transport.Consequently,the graphite anode retained a prolonged cycling capability of up to 1400 cycles(245 mA h g,remaining above 12 mon)with an excellent capacity retention of as high as 92.4%.This is superior to those of conventional and high-concentration electrolytes.Thus,the optimized electrolyte with moderate salt concentration is perfectly compatible with graphite,providing a potential application prospect for K-storage evolution.展开更多
基金supported by the National Natural Science Foundation of China(91963118)the Fundamental Research Funds for the Central Universities(2412019ZD010).
文摘One main challenge for phosphate cathodes in sodium-ion batteries(SIBs)is to increase the working voltage and energy density to promote its practicability.Herein,an advanced Na3V2(PO4)2F3@C cathode is prepared successfully for sodium-ion full cells.It is revealed that,carbon coating can not only enhance the electronic conductivity and electrode kinetics of Na3V2(PO4)2F3@C and inhibit the growth of particles(i.e.,shorten the Na^+-migration path),but also unexpectedly for the first time adjust the dis-/charging plateaux at different voltage ranges to increase the mean voltage(from 3.59 to 3.71 V)and energy density from 336.0 to 428.5 Wh kg^-1 of phosphate cathode material.As a result,when used as cathode for SIBs,the prepared Na3V2(PO4)2F3@C delivers much improved electrochemical properties in terms of larger specifc capacity(115.9 vs.93.5 mAh g^-1),more outstanding high-rate capability(e.g.,87.3 vs.60.5 mAh g^-1 at 10 C),higher energy density,and better cycling performance,compared to pristine Na3V2(PO4)2F3.Reasons for the enhanced electrochemical properties include ionicity enhancement of lattice induced by carbon coating,improved electrode kinetics and electronic conductivity,and high stability of lattice,which is elucidated clearly through the contrastive characterization and electrochemical studies.Moreover,excellent energy-storage performance in sodium-ion full cells further demonstrate the extremely high possibility of Na3V2(PO4)2F3@C cathode for practical applications.
基金financially supported by the National Natural Science Foundation of China (21873018, 21573036 and 21274017)the open project of Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis (130028655)
文摘Constructing potential anodes for sodium-ion batteries(SIBs)with a wide temperature property has captured enormous interests in recent years.Fe1-xS,a zero-band gap material confirmed by density states calculation,is an ideal electrode for fast energy storage on account of its low cost and high theoretical capacity.Herein,Fe1-xS nanosheet wrapped by nitrogen-doped carbon(Fe1-xS@NC)is engineered through a post-sulfidation strategy using Fe-based metal-organic framework(Fe-MOF)as the precursor.The obtained Fe1-xS@NC agaric-like structure can well shorten the charge diffusion pathway,and significantly enhance the ionic/electronic conductivities and the reaction kinetics.As expected,the Fe1-xS@NC electrode,as a prospective SIB anode,delivers a desirable capacity up to 510.2 mA h g^-1 at a high rate of8000 mA g^-1.Additionally,even operated at low temperatures of 0 and-25°C,high reversible capacities of 387.1 and 223.4 mA h g^-1 can still be obtained at 2000 mA g^-1,respectively,indicating its huge potential use at harsh temperatures.More noticeably,the full battery made by the Fe1-xS@NC anode and Na3 V2(PO4)2 O2 F cathode achieves a remarkable rate capacity(186.8 mA h g^-1 at 2000 m A g^-1)and an impressive cycle performance(183.6 m A h g^-1 after 100 cycles at700 mA g^-1)between 0.3 and 3.8 V.Such excellent electrochemical performance is mainly contributed by its pseudocapacitive-dominated behavior,which brings fast electrode kinetics and robust structural stability to the whole electrode.
基金supported by the National Natural Science Foundation of China(91963118 and 52173246)Science Technology Program of Jilin Province(20200201066JC)the 111 Project(B13013)。
文摘Although graphite anodes operated with representative de/intercalation patterns at low potentials are considered highly desirable for K-ion batteries,the severe capacity fading caused by consecutive reduction reactions on the aggressively reactive surface is inevitable given the scarcity of effective protecting layers.Herein,by introducing a flame-retardant localized high-concentration electrolyte with retentive solvation configuration and relatively weakened anion-coordination and non-solvating fluorinated ether,the rational solid electrolyte interphase characterized by well-balanced inorganic/organic components is tailored in situ.This effectively prevented solvents from excessively decomposing and simultaneously improved the resistance against K-ion transport.Consequently,the graphite anode retained a prolonged cycling capability of up to 1400 cycles(245 mA h g,remaining above 12 mon)with an excellent capacity retention of as high as 92.4%.This is superior to those of conventional and high-concentration electrolytes.Thus,the optimized electrolyte with moderate salt concentration is perfectly compatible with graphite,providing a potential application prospect for K-storage evolution.