将锂电池镍钴锰正极回收粉末试样预处理后再升温到相应的热处理温度下完成煅烧过程。通过实验测试的手段分析其组织演变及充放电性能。研究结果表明,提高热处理温度后,试样可以保持稳定晶型结构,当电池发生失效后依然可以在材料主体中...将锂电池镍钴锰正极回收粉末试样预处理后再升温到相应的热处理温度下完成煅烧过程。通过实验测试的手段分析其组织演变及充放电性能。研究结果表明,提高热处理温度后,试样可以保持稳定晶型结构,当电池发生失效后依然可以在材料主体中形成良好的层状组织。逐渐提高材料的处理温度后,阳离子发生了更大程度混排。试样保持团聚体结构,颗粒尺寸约9μm,在颗粒间形成了部分黏结物。经过700℃与800℃烧结后试样表面形成光滑结构,已经观察不到小颗粒。试样首次充放电得到初始试样容量为7.05 m A·h/g,随着温度上升,材料发生了初始放电比容量增大的趋势,800℃时获得最大值。逐渐提高温度后,容量保持率减小,热处理温度800℃时获得了高放电比容量与高容量保持率的较优综合性能。展开更多
文摘将锂电池镍钴锰正极回收粉末试样预处理后再升温到相应的热处理温度下完成煅烧过程。通过实验测试的手段分析其组织演变及充放电性能。研究结果表明,提高热处理温度后,试样可以保持稳定晶型结构,当电池发生失效后依然可以在材料主体中形成良好的层状组织。逐渐提高材料的处理温度后,阳离子发生了更大程度混排。试样保持团聚体结构,颗粒尺寸约9μm,在颗粒间形成了部分黏结物。经过700℃与800℃烧结后试样表面形成光滑结构,已经观察不到小颗粒。试样首次充放电得到初始试样容量为7.05 m A·h/g,随着温度上升,材料发生了初始放电比容量增大的趋势,800℃时获得最大值。逐渐提高温度后,容量保持率减小,热处理温度800℃时获得了高放电比容量与高容量保持率的较优综合性能。