Previous studies on streaming media networks have mainly focused on how to conserve the network bandwidth, especially the Internet backbone bandwidth, while maintaining a desired quality. This paper tackles the prob...Previous studies on streaming media networks have mainly focused on how to conserve the network bandwidth, especially the Internet backbone bandwidth, while maintaining a desired quality. This paper tackles the problem from another perspective, trying to improve the individual streaming quality while not increasing the backbone traffic. Specifically, we apply a peer-paired collaborative streaming architecture that exploits the power of peer-to-peer networking and extends the peer-paired collaboration from a live broadcasting scenario to the more general on-demand streaming scenario by introducing a unique catch-up scheme. Experimental results show that the peer-paired collaboration can bring about a significant performance gain for on-demand streaming application scenarios. In addition, we propose a forward error correction based error recovery technique that can resist up to 50% packet losses regardless of whether the losses are independent or shared.展开更多
Video streaming is one of the most important applications used in the best-effort Internet. This paper presents a new scheme for multiple source video streaming in which the traditional fine granular scal-able coding ...Video streaming is one of the most important applications used in the best-effort Internet. This paper presents a new scheme for multiple source video streaming in which the traditional fine granular scal-able coding was rebuilt into a multiple sub-streams based transmission model. A peak signal to noise ratio based stream rate allocation algorithm was then developed based on the transmission model. In tests, the algorithm performance is about 1 dB higher than that of a uniform rate allocation algorithm. Therefore, this scheme can overcome bottlenecks along a single link and smooth jitter to achieve high quality and stable video.展开更多
文摘Previous studies on streaming media networks have mainly focused on how to conserve the network bandwidth, especially the Internet backbone bandwidth, while maintaining a desired quality. This paper tackles the problem from another perspective, trying to improve the individual streaming quality while not increasing the backbone traffic. Specifically, we apply a peer-paired collaborative streaming architecture that exploits the power of peer-to-peer networking and extends the peer-paired collaboration from a live broadcasting scenario to the more general on-demand streaming scenario by introducing a unique catch-up scheme. Experimental results show that the peer-paired collaboration can bring about a significant performance gain for on-demand streaming application scenarios. In addition, we propose a forward error correction based error recovery technique that can resist up to 50% packet losses regardless of whether the losses are independent or shared.
基金the National Natural Science Foundation of China (No. 60273008)
文摘Video streaming is one of the most important applications used in the best-effort Internet. This paper presents a new scheme for multiple source video streaming in which the traditional fine granular scal-able coding was rebuilt into a multiple sub-streams based transmission model. A peak signal to noise ratio based stream rate allocation algorithm was then developed based on the transmission model. In tests, the algorithm performance is about 1 dB higher than that of a uniform rate allocation algorithm. Therefore, this scheme can overcome bottlenecks along a single link and smooth jitter to achieve high quality and stable video.