基于逻辑判别式(LD,Logistic Discrimination),提出一种叫做LDRC(LD based Rare-class Classification)方法用于提升LD在稀有类问题中的泛化性能.为了充分考虑稀有类的特性,构建了一种新目标函数RPM(Recall and Precision based M etri...基于逻辑判别式(LD,Logistic Discrimination),提出一种叫做LDRC(LD based Rare-class Classification)方法用于提升LD在稀有类问题中的泛化性能.为了充分考虑稀有类的特性,构建了一种新目标函数RPM(Recall and Precision based M etric),其同时考虑正类和负类的召回率以及正类的精度,其中正类和负类的召回率用于保障模型在评估指标召回率以及g-mean(正类和分类的召回率的几何平均数)上具有较高的泛化能力,正类的召回率和精度用于保障了模型具有较高的准确率以及fmeasure值(基于正类召回率与精度的指标).LDRC使用RPM作为目标函数监督参数学习过程,以保障LDRC具有较高的整体泛化能力.UCI数据集上的实验结果表明,与传统的逻辑判别、基于过采样和基于欠采样的逻辑判别相比,LDRC模型在评价指标召回率、g-mean和f-measure上都表现出明显优势.展开更多
为了有效预测光伏发电站发电功率,提高预测精度,给出一种基于森林预测模型FPPG(Forest for Photovoltaic Power Generation)。FPPG是一个由多个回归树组成的集合预测模型。在学习阶段,FPPG首先随机抽样方法构建有差异的训练数据集,进而...为了有效预测光伏发电站发电功率,提高预测精度,给出一种基于森林预测模型FPPG(Forest for Photovoltaic Power Generation)。FPPG是一个由多个回归树组成的集合预测模型。在学习阶段,FPPG首先随机抽样方法构建有差异的训练数据集,进而在不同的训练集上构建有差异的回归树。在预测阶段,首先,FPPG将输入信息沿着每棵树的某条路径分派到相应的叶结点,使用这些叶结点预测发电量,然后,平均这些预测结果得到FPPG对发电厂系统发电量的预测。在实测运行数据集上的实验结果表明,较之于神经网络,FPPG同时表现出更高的预测准确性,从而提高了光伏发电功率预测精度。展开更多
文摘基于逻辑判别式(LD,Logistic Discrimination),提出一种叫做LDRC(LD based Rare-class Classification)方法用于提升LD在稀有类问题中的泛化性能.为了充分考虑稀有类的特性,构建了一种新目标函数RPM(Recall and Precision based M etric),其同时考虑正类和负类的召回率以及正类的精度,其中正类和负类的召回率用于保障模型在评估指标召回率以及g-mean(正类和分类的召回率的几何平均数)上具有较高的泛化能力,正类的召回率和精度用于保障了模型具有较高的准确率以及fmeasure值(基于正类召回率与精度的指标).LDRC使用RPM作为目标函数监督参数学习过程,以保障LDRC具有较高的整体泛化能力.UCI数据集上的实验结果表明,与传统的逻辑判别、基于过采样和基于欠采样的逻辑判别相比,LDRC模型在评价指标召回率、g-mean和f-measure上都表现出明显优势.
文摘为了有效预测光伏发电站发电功率,提高预测精度,给出一种基于森林预测模型FPPG(Forest for Photovoltaic Power Generation)。FPPG是一个由多个回归树组成的集合预测模型。在学习阶段,FPPG首先随机抽样方法构建有差异的训练数据集,进而在不同的训练集上构建有差异的回归树。在预测阶段,首先,FPPG将输入信息沿着每棵树的某条路径分派到相应的叶结点,使用这些叶结点预测发电量,然后,平均这些预测结果得到FPPG对发电厂系统发电量的预测。在实测运行数据集上的实验结果表明,较之于神经网络,FPPG同时表现出更高的预测准确性,从而提高了光伏发电功率预测精度。