草地叶面积指数(Leaf area index,LAI)是天然草地的重要结构参数,能够用来监测草地的生长状况和生产力水平,对草地资源可持续利用和科学管理具有重要意义。以内蒙古锡林郭勒盟典型草原为研究对象,首先使用无人机激光雷达(Airborne light...草地叶面积指数(Leaf area index,LAI)是天然草地的重要结构参数,能够用来监测草地的生长状况和生产力水平,对草地资源可持续利用和科学管理具有重要意义。以内蒙古锡林郭勒盟典型草原为研究对象,首先使用无人机激光雷达(Airborne light detection and ranging,Air-LiDAR)草地冠层观测数据,通过解析点云数据构建冠层高度模型(Canopy height model,CHM),随后进行研究区草地冠层间隙率计算,最后基于Beer-Lambert方法进行0.05 m、0.10 m、0.15 m、0.20 m 4个不同空间分辨率采样尺度下的LAI估算,并选择CHM低值、中值、高值3个不同子区域分别进行不同冠层高度下LAI的检验和分析。结果表明:(1)草地叶面积指数与冠层高度模型数值呈正相关、与冠层间隙率呈负相关。(2)机载LiDAR草地LAI估算的最优采样尺度为0.15 m,CHM不同高度子区域LAI结果检验R²和RMSE分别为:低值区为0.66和0.04;中值区为0.54和0.34;高值区为0.54和1.17,表明无人机LiDAR可捕获草地冠层观测采样存在的异质性差异分布特征。(3)不同空间分辨率0.05~0.20 m间隔采样LAI结果表明,对于CHM低值、植被分布稀疏区域不同分辨率LAI无显著空间尺度变化差异,但CHM高值、较密植被分布群落LAI会随空间分辨率表现出尺度性差异。综上所述,本研究设计完成的无人机LiDAR草地LAI估算模型,参数机理具体、流程方法可操作性强,具有较好的数值检验精度,可为激光雷达在草地植被叶面积指数遥感反演及应用提供技术参考。展开更多
定量获取地表植被高精度时序及空间覆盖的叶面积指数(Leaf Area Index,LAI)是生态监测及农业生产应用的重要研究内容。通过使用Moderate Resolution Imaging Spectroradiometer(MODIS)植被冠层多角度观测MOD09GA数据及叶面积指数MOD15A...定量获取地表植被高精度时序及空间覆盖的叶面积指数(Leaf Area Index,LAI)是生态监测及农业生产应用的重要研究内容。通过使用Moderate Resolution Imaging Spectroradiometer(MODIS)植被冠层多角度观测MOD09GA数据及叶面积指数MOD15A2数据,发展了一种参数化的叶面积指数遥感反演方法并完成了必要的检验分析。研究使用基于辐射传输理论的RossThick LiSparse Reciprocal(RTLSR)核驱动模型及Scattering by Arbitrarily Inclined Leaves with Hotspot(SAILH)模型进行植被冠层辐射特征的提取,使用Anisotropic Index(ANIX)异质性指数作为指示植被冠层二向反射分布Bidirectional Reflectance Distribution Function(BRDF)的辅助特征信息,发展了基于数据机理(Data-Based Mechanistic,DBM)的植被叶面积指数建模和估算方法。通过必要的林地、农作物、草地植被实验区反演及数值分析可得知:①时间序列多角度遥感观测数据结合数据机理的叶面积指数估算方法,可实现模型参数的时序动态更新,改进叶面积指数估算结果的时序完整性及精度。②异质性指数可以用做指示植被冠层二向反射分布特征信息,可降低因观测数据几何条件差异所导致的反演结果不确定情况,同时能够补充植被时序生长过程表现的植被结构变化等动态特征。经研究实践,可将算法应用于时空尺度的叶面积指数估算,并能够为生态、农业应用提供植被的高精度遥感监测指标。展开更多
文摘定量获取地表植被高精度时序及空间覆盖的叶面积指数(Leaf Area Index,LAI)是生态监测及农业生产应用的重要研究内容。通过使用Moderate Resolution Imaging Spectroradiometer(MODIS)植被冠层多角度观测MOD09GA数据及叶面积指数MOD15A2数据,发展了一种参数化的叶面积指数遥感反演方法并完成了必要的检验分析。研究使用基于辐射传输理论的RossThick LiSparse Reciprocal(RTLSR)核驱动模型及Scattering by Arbitrarily Inclined Leaves with Hotspot(SAILH)模型进行植被冠层辐射特征的提取,使用Anisotropic Index(ANIX)异质性指数作为指示植被冠层二向反射分布Bidirectional Reflectance Distribution Function(BRDF)的辅助特征信息,发展了基于数据机理(Data-Based Mechanistic,DBM)的植被叶面积指数建模和估算方法。通过必要的林地、农作物、草地植被实验区反演及数值分析可得知:①时间序列多角度遥感观测数据结合数据机理的叶面积指数估算方法,可实现模型参数的时序动态更新,改进叶面积指数估算结果的时序完整性及精度。②异质性指数可以用做指示植被冠层二向反射分布特征信息,可降低因观测数据几何条件差异所导致的反演结果不确定情况,同时能够补充植被时序生长过程表现的植被结构变化等动态特征。经研究实践,可将算法应用于时空尺度的叶面积指数估算,并能够为生态、农业应用提供植被的高精度遥感监测指标。