局部均值分解(Local Mean Decomposition,简称LMD)作为一种新的自适应的时频分析方法,在故障诊断领域开始得到研究。利用仿真信号研究了LMD算法的特性,验证了LMD处理描述齿轮故障信号特征的多分量调幅调频信号的有效性;在此基础上将LMD...局部均值分解(Local Mean Decomposition,简称LMD)作为一种新的自适应的时频分析方法,在故障诊断领域开始得到研究。利用仿真信号研究了LMD算法的特性,验证了LMD处理描述齿轮故障信号特征的多分量调幅调频信号的有效性;在此基础上将LMD综合应用于断齿、磨损和剥落三种齿轮故障诊断中,并与传统解调方法进行了对比。结果表明,LMD方法可以有效提取故障齿轮的故障特征,消除虚假成分的影响,从而提高了齿轮故障诊断的准确性。展开更多
文摘局部均值分解(Local Mean Decomposition,简称LMD)作为一种新的自适应的时频分析方法,在故障诊断领域开始得到研究。利用仿真信号研究了LMD算法的特性,验证了LMD处理描述齿轮故障信号特征的多分量调幅调频信号的有效性;在此基础上将LMD综合应用于断齿、磨损和剥落三种齿轮故障诊断中,并与传统解调方法进行了对比。结果表明,LMD方法可以有效提取故障齿轮的故障特征,消除虚假成分的影响,从而提高了齿轮故障诊断的准确性。