China is playing an increasing role in global climate change mitigation,and local authorities need more city-specifc information on the emissions trends and patterns when designing low-carbon policies.This study provi...China is playing an increasing role in global climate change mitigation,and local authorities need more city-specifc information on the emissions trends and patterns when designing low-carbon policies.This study provides the most comprehensive COemission inventories of 287 Chinese cities from 2001 to2019.The emission inventories are compiled for 47 economic sectors and include energy-related emissions for 17 types of fossil fuels and process-related emissions from cement production.We further investigate the state of the emission peak in each city and reveal hidden driving forces.The results show that38 cities have proactively peaked their emissions for at least fve years and another 21 cities also have emission decline,but passively.The 38 proactively peaked cities achieved emission decline mainly by effciency improvements and structural changes in energy use,while the 21 passively emission declined cities reduced emissions at the cost of economic recession or population loss.We propose that those passively emission declined cities need to face up to the reasons that caused the emission to decline,and fully exploit the opportunities provided by industrial innovation and green investment brought by low-carbon targets to achieve economic recovery and carbon mitigation goals.Proactively peaked cities need to seek strategies to maintain the downward trend in emissions and avoid an emission rebound and thus provide successful models for cities with still growing emissions to achieve an emission peak.展开更多
Given that it was a once-in-a-century emergency event,the confinement measures related to the coronavirus disease 2019(COVID-19)pandemic caused diverse disruptions and changes in life and work patterns.These changes s...Given that it was a once-in-a-century emergency event,the confinement measures related to the coronavirus disease 2019(COVID-19)pandemic caused diverse disruptions and changes in life and work patterns.These changes significantly affected water consumption both during and after the pandemic,with direct and indirect consequences on biodiversity.However,there has been a lack of holistic evaluation of these responses.Here,we propose a novel framework to study the impacts of this unique global emergency event by embedding an environmentally extended supply-constrained global multi-regional input-output model(MRIO)into the drivers-pressure-state-impact-response(DPSIR)framework.This framework allowed us to develop scenarios related to COVID-19 confinement measures to quantify country-sector-specific changes in freshwater consumption and the associated changes in biodiversity for the period of 2020-2025.The results suggest progressively diminishing impacts due to the implementation of COVID-19 vaccines and the socio-economic system’s self-adjustment to the new normal.In 2020,the confinement measures were estimated to decrease global water consumption by about 5.7% on average across all scenarios when compared with the baseline level with no confinement measures.Further,such a decrease is estimated to lead to a reduction of around 5% in the related pressure on biodiversity.Given the interdependencies and interactions across global supply chains,even those countries and sectors that were not directly affected by the COVID-19 shocks experienced significant impacts:Our results indicate that the supply chain propagations contributed to 79% of the total estimated decrease in water consumption and 84%of the reduction in biodiversity loss on average.Our study demonstrates that the MRIO-enhanced DSPIR framework can help quantify resource pressures and the resultant environmental impacts across supply chains when facing a global emergency event.Further,we recommend the development of more locally based water conservation measur展开更多
基金supported by the National Natural Science Foundation of China(72140001 and 41921005)Shandong Provincial Science Fund for Excellent Youth Scholars(ZR2021YQ27)+1 种基金the National Social Science Fund of China(21ZDA065)the Natural Environment Research Council(2021GRIP02COP-AQ)。
文摘China is playing an increasing role in global climate change mitigation,and local authorities need more city-specifc information on the emissions trends and patterns when designing low-carbon policies.This study provides the most comprehensive COemission inventories of 287 Chinese cities from 2001 to2019.The emission inventories are compiled for 47 economic sectors and include energy-related emissions for 17 types of fossil fuels and process-related emissions from cement production.We further investigate the state of the emission peak in each city and reveal hidden driving forces.The results show that38 cities have proactively peaked their emissions for at least fve years and another 21 cities also have emission decline,but passively.The 38 proactively peaked cities achieved emission decline mainly by effciency improvements and structural changes in energy use,while the 21 passively emission declined cities reduced emissions at the cost of economic recession or population loss.We propose that those passively emission declined cities need to face up to the reasons that caused the emission to decline,and fully exploit the opportunities provided by industrial innovation and green investment brought by low-carbon targets to achieve economic recovery and carbon mitigation goals.Proactively peaked cities need to seek strategies to maintain the downward trend in emissions and avoid an emission rebound and thus provide successful models for cities with still growing emissions to achieve an emission peak.
基金supported by Aalto University and the Henan Provincial Key Laboratory of Hydrosphere and Watershed Water SecurityAdditional support was provided by the National Natural Science Foundation of China(42361144001,72304112,72074136,and 72104129)the Key Program of International Cooperation,Bureau of International Cooperation,the Chinese Academy of Sciences(131551KYSB20210030).
文摘Given that it was a once-in-a-century emergency event,the confinement measures related to the coronavirus disease 2019(COVID-19)pandemic caused diverse disruptions and changes in life and work patterns.These changes significantly affected water consumption both during and after the pandemic,with direct and indirect consequences on biodiversity.However,there has been a lack of holistic evaluation of these responses.Here,we propose a novel framework to study the impacts of this unique global emergency event by embedding an environmentally extended supply-constrained global multi-regional input-output model(MRIO)into the drivers-pressure-state-impact-response(DPSIR)framework.This framework allowed us to develop scenarios related to COVID-19 confinement measures to quantify country-sector-specific changes in freshwater consumption and the associated changes in biodiversity for the period of 2020-2025.The results suggest progressively diminishing impacts due to the implementation of COVID-19 vaccines and the socio-economic system’s self-adjustment to the new normal.In 2020,the confinement measures were estimated to decrease global water consumption by about 5.7% on average across all scenarios when compared with the baseline level with no confinement measures.Further,such a decrease is estimated to lead to a reduction of around 5% in the related pressure on biodiversity.Given the interdependencies and interactions across global supply chains,even those countries and sectors that were not directly affected by the COVID-19 shocks experienced significant impacts:Our results indicate that the supply chain propagations contributed to 79% of the total estimated decrease in water consumption and 84%of the reduction in biodiversity loss on average.Our study demonstrates that the MRIO-enhanced DSPIR framework can help quantify resource pressures and the resultant environmental impacts across supply chains when facing a global emergency event.Further,we recommend the development of more locally based water conservation measur
基金supported by the National Natural Science Foundation of China(72242105)the National Key Research and Development Program of China(2022YFE0208700 and2022YFE0208500)the Norwegian Research Council(287690/F20)。