We theoretically analyse the temperature effects on a surface plasmon resonance (SPR) sensor in Kretschmann configuration. The temperature effects include the thermo-optic effect and the dispersion of thermal-optic ...We theoretically analyse the temperature effects on a surface plasmon resonance (SPR) sensor in Kretschmann configuration. The temperature effects include the thermo-optic effect and the dispersion of thermal-optic coefficient in the dielectric along with the thermal expansion effect, phonon-electron scattering and electron-electron scattering in the metal layer. We simulate the temperature dependence of the resonance position and the sensitivity of the SPR sensor under wavelength-interrogation and angular-interrogation mode of operation and the differences are pointed out in the two modes.展开更多
We study the sensing properties of an intensity-modulated fiber-optic surface plasmon resonance (SPR) sensor using radially polarized beam (RPB). Because of the rotational symmetry of fiber and RPB, surface plasmo...We study the sensing properties of an intensity-modulated fiber-optic surface plasmon resonance (SPR) sensor using radially polarized beam (RPB). Because of the rotational symmetry of fiber and RPB, surface plasmon can be excited more efficiently at the sensor surface, which results in an obvious improvement of the sensitivity. Our experiments demonstrate that the sensitivity in the case of RPB illumination is three times higher than that of linearlv polarized beam illumination.展开更多
Visible light wavelength division multiplexing (VWDM) experiment was performed using polymer optical fiber (POF). Lights of two different wavelengths (650 and 530 nm) were sent to a single POF. Red light (650 n...Visible light wavelength division multiplexing (VWDM) experiment was performed using polymer optical fiber (POF). Lights of two different wavelengths (650 and 530 nm) were sent to a single POF. Red light (650 nm) was used for 100-Mb/s full duplex IP data transmission and green light (530 nm) was used for voice signal transmission. Light sources are light-emitting diodes (LEDs). A POF coupler (splitter) and the prisms were employed as multiplexer and demultiplexer, respectively. The channel isolation and insert loss were measured, which are 20.5 and 17.65 dB for 650-nm channel respectively, and 19.16 and 20.55 dB for 530 nm one respectively.展开更多
Gold nanorods with different aspect ratios are prepared in micells using a seeded growth method. Their extinction spectra are observed with an UV-visible spectrophotometer and analysed theoretically. It is known that ...Gold nanorods with different aspect ratios are prepared in micells using a seeded growth method. Their extinction spectra are observed with an UV-visible spectrophotometer and analysed theoretically. It is known that there are two plasmon resonance peaks for gold nanorod corresponding to transverse and longitudinal plasmon resonance respectively. Moreover, the longitudinal plasmon resonance peak shifts to long wavelength when we increase the aspect ratio determined from TEM. Especially, we model the extinction spectrum using Gans' theory and compare it with our experimental result. Considering the aspect radios distribution of gold nanorods, it is found that longitudinal plasmon resonance peak will be wider than the nanorods with single aspect ratio, which is consistent with our experimental result. In addition, the effect of dielectric constant of surrounding medium is considered.展开更多
We re-examine the classical one-dimensional transmission grating to explain the enhanced transmission in the surface impedance approximation. The nearly zero transmission and extraordinary transmission phenomena relat...We re-examine the classical one-dimensional transmission grating to explain the enhanced transmission in the surface impedance approximation. The nearly zero transmission and extraordinary transmission phenomena related to the surface plasmon are presented by analysing the scattering amplitude of waveguide mode at the output surface of grating. It is revealed that the transmission peaks are related to the Fabry-Perot factor and the interaction of surface plasmon and other diffractive orders.展开更多
A multimode fiber-optic surface plasmon resonance (SPR) sensor with a MgF2 film as a modulated layer is studied. The fiber-optic SPR sensor is investigated theoretically, specifically the influence of the dielectric...A multimode fiber-optic surface plasmon resonance (SPR) sensor with a MgF2 film as a modulated layer is studied. The fiber-optic SPR sensor is investigated theoretically, specifically the influence of the dielectric protecting layer, using a four-layer model. The sensor is then fabricated with the optimal parameters suggested by the theoretical simulation. The sensor has a high sensitivity in the analyte refractive index (RI) range of 1.33-1.40. The best sensitivity of 4 464 nm/RIU is achieved in the experiment. The use of dielectric film (MgF2) can not only modulate the resonance wavelength of the sensor, but also protect the silver film from oxidation.展开更多
基金Supported by the National Basic Research Programme of China under Grant No 2006cb302905, the National Science Foundation of China under Grant No 10474093, the Knowledge Innovation Project of Chinese Academy of Sciences under Grant No KJCX3.Syw.H02, and the National High-Technology Research and Development Programme of China under Grant No 2007AA06Z420.
文摘We theoretically analyse the temperature effects on a surface plasmon resonance (SPR) sensor in Kretschmann configuration. The temperature effects include the thermo-optic effect and the dispersion of thermal-optic coefficient in the dielectric along with the thermal expansion effect, phonon-electron scattering and electron-electron scattering in the metal layer. We simulate the temperature dependence of the resonance position and the sensitivity of the SPR sensor under wavelength-interrogation and angular-interrogation mode of operation and the differences are pointed out in the two modes.
基金supported by the National Basic Research Program of China (No.2006cb302905)the Key Program of National Natural Science Foundation of China (No.60736037)+1 种基金the National Natural Science Foundation of China (No.10704070)P.Wang was also supported by the Science and Technological Fund of Anhui Province for Outstanding Youth (No.08040106805)
文摘We study the sensing properties of an intensity-modulated fiber-optic surface plasmon resonance (SPR) sensor using radially polarized beam (RPB). Because of the rotational symmetry of fiber and RPB, surface plasmon can be excited more efficiently at the sensor surface, which results in an obvious improvement of the sensitivity. Our experiments demonstrate that the sensitivity in the case of RPB illumination is three times higher than that of linearlv polarized beam illumination.
基金This work was supported by the National Natural ScienceFoundation of China (No. 90201013) and the ProvincialNatural Science Foundation of Anhui (No. 03042402).
文摘Visible light wavelength division multiplexing (VWDM) experiment was performed using polymer optical fiber (POF). Lights of two different wavelengths (650 and 530 nm) were sent to a single POF. Red light (650 nm) was used for 100-Mb/s full duplex IP data transmission and green light (530 nm) was used for voice signal transmission. Light sources are light-emitting diodes (LEDs). A POF coupler (splitter) and the prisms were employed as multiplexer and demultiplexer, respectively. The channel isolation and insert loss were measured, which are 20.5 and 17.65 dB for 650-nm channel respectively, and 19.16 and 20.55 dB for 530 nm one respectively.
基金Supported by the National Basic Research Programme of China under Grant No 2006cb302905, the National Key Science Foundation of China under Grant No 60736037, the National Science Foundation of China under Grant No 10704070, the High-Technology Research and Development Programme of China under Grant No 2007AA06Z420, and the Science and Technological Fund of Anhui Province for Outstanding Youth (08040106805).
文摘Gold nanorods with different aspect ratios are prepared in micells using a seeded growth method. Their extinction spectra are observed with an UV-visible spectrophotometer and analysed theoretically. It is known that there are two plasmon resonance peaks for gold nanorod corresponding to transverse and longitudinal plasmon resonance respectively. Moreover, the longitudinal plasmon resonance peak shifts to long wavelength when we increase the aspect ratio determined from TEM. Especially, we model the extinction spectrum using Gans' theory and compare it with our experimental result. Considering the aspect radios distribution of gold nanorods, it is found that longitudinal plasmon resonance peak will be wider than the nanorods with single aspect ratio, which is consistent with our experimental result. In addition, the effect of dielectric constant of surrounding medium is considered.
基金Supported by the National Basic Research Programme of China under Grant No 2006CB302905, the National Natural Science Foundation of China under Grant Nos 60736037 (key project) and 10704070, and the Science and Technological Fund of Anhui Province for Outstanding Youth (08040106805).
文摘We re-examine the classical one-dimensional transmission grating to explain the enhanced transmission in the surface impedance approximation. The nearly zero transmission and extraordinary transmission phenomena related to the surface plasmon are presented by analysing the scattering amplitude of waveguide mode at the output surface of grating. It is revealed that the transmission peaks are related to the Fabry-Perot factor and the interaction of surface plasmon and other diffractive orders.
基金supported by the National Basic Research Program of China(No.2011cb301802)the National Natural Science Foundation of China(Nos. 60736037,61036005,and 10704070)the Fundamental Research Funds for the Central Universities
文摘A multimode fiber-optic surface plasmon resonance (SPR) sensor with a MgF2 film as a modulated layer is studied. The fiber-optic SPR sensor is investigated theoretically, specifically the influence of the dielectric protecting layer, using a four-layer model. The sensor is then fabricated with the optimal parameters suggested by the theoretical simulation. The sensor has a high sensitivity in the analyte refractive index (RI) range of 1.33-1.40. The best sensitivity of 4 464 nm/RIU is achieved in the experiment. The use of dielectric film (MgF2) can not only modulate the resonance wavelength of the sensor, but also protect the silver film from oxidation.