为了提高AVO(amplitude versus offset)反演结果的精度和横向连续性,本文提出了一种新的AVO反演约束方法,该方法结合贝叶斯原理和卡尔曼滤波算法实现了对反演参数纵向和横向的同时约束.文章首先结合反演参数的纵向贝叶斯先验概率约束和...为了提高AVO(amplitude versus offset)反演结果的精度和横向连续性,本文提出了一种新的AVO反演约束方法,该方法结合贝叶斯原理和卡尔曼滤波算法实现了对反演参数纵向和横向的同时约束.文章首先结合反演参数的纵向贝叶斯先验概率约束和反演参数的横向连续性假设建立了与卡尔曼滤波算法对应的AVO反演系统的数学模型,然后将该数学模型代入卡尔曼滤波算法框架,利用卡尔曼滤波算法实现了双向约束AVO反演.二维模型测试和实际数据测试结果表明,相对于单纯的纵向贝叶斯先验概率约束,双向约束能更准确地刻画参数的横向变化,得到更准确、横向连续性更好的反演结果.展开更多
文摘为了提高AVO(amplitude versus offset)反演结果的精度和横向连续性,本文提出了一种新的AVO反演约束方法,该方法结合贝叶斯原理和卡尔曼滤波算法实现了对反演参数纵向和横向的同时约束.文章首先结合反演参数的纵向贝叶斯先验概率约束和反演参数的横向连续性假设建立了与卡尔曼滤波算法对应的AVO反演系统的数学模型,然后将该数学模型代入卡尔曼滤波算法框架,利用卡尔曼滤波算法实现了双向约束AVO反演.二维模型测试和实际数据测试结果表明,相对于单纯的纵向贝叶斯先验概率约束,双向约束能更准确地刻画参数的横向变化,得到更准确、横向连续性更好的反演结果.