A liquid-droplet technique was investigated to fabricate thin wall hollow glass microspheres (HGM) used in laser fusion experiments on Shen Guang II. Glass-forming compositions, operating conditions of the droplet gen...A liquid-droplet technique was investigated to fabricate thin wall hollow glass microspheres (HGM) used in laser fusion experiments on Shen Guang II. Glass-forming compositions, operating conditions of the droplet generator and the vertical multiple-zone furnace were optimized. Thin wall HGM with diameters of about 100, 200, and 520 pm were fabricated, whose failure pressures, gas retention properties for D2, and chemical durability were all characterized. The results of the fusion experiments show that the HGM targets are quite satisfactory and the highest neutron yields obtained are 4 × 109.展开更多
基金This work was supported by the Pre-research Foundation of Chinese Academy of Engineering Physics (Grant No. 990553) .
文摘A liquid-droplet technique was investigated to fabricate thin wall hollow glass microspheres (HGM) used in laser fusion experiments on Shen Guang II. Glass-forming compositions, operating conditions of the droplet generator and the vertical multiple-zone furnace were optimized. Thin wall HGM with diameters of about 100, 200, and 520 pm were fabricated, whose failure pressures, gas retention properties for D2, and chemical durability were all characterized. The results of the fusion experiments show that the HGM targets are quite satisfactory and the highest neutron yields obtained are 4 × 109.