期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于深度学习的图像超分辨率研究综述 被引量:5
1
作者 李洪安 +3 位作者 陶若霖 张敏 李占利 康宝生 《图学学报》 CSCD 北大核心 2023年第1期1-15,共15页
超分辨率(SR)是一类重要的数字图像处理技术,其根据一个观测者得到的低分辨率(LR)图像重建并输出一个相应的高分辨率(HR)图像,从而提高现代数字图像的分辨率。SR在数字图像压缩与传输、医学成像、遥感成像、视频感知与监控等学科中的研... 超分辨率(SR)是一类重要的数字图像处理技术,其根据一个观测者得到的低分辨率(LR)图像重建并输出一个相应的高分辨率(HR)图像,从而提高现代数字图像的分辨率。SR在数字图像压缩与传输、医学成像、遥感成像、视频感知与监控等学科中的研究与应用价值巨大。随着深度学习的快速发展,结合最新的深度学习方法,可以为SR问题提供创新性的解决方案。首先回顾SR的背景意义、发展过程以及将深度学习应用于SR的技术价值。其次简要介绍传统SR算法的基本方法、分类和优缺点;按照不同的实现技术和网络类型对基于深度学习的SR方法进行了分类介绍,重点分析对比了卷积神经网络(CNN)、残差网络(ResNet)和生成对抗网络(GAN)在SR中的应用。然后介绍主要评价指标和解决策略,并对不同的SR算法在标准数据集中的性能表现进行对比。最后总结基于深度学习的SR算法,并对未来发展趋势进行展望。 展开更多
关键词 超分辨率 深度学习 评价指标 退化模型 数据集
下载PDF
结合Pix2Pix生成对抗网络的灰度图像着色方法 被引量:9
2
作者 李洪安 +3 位作者 张婧 杜卓明 李占利 康宝生 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2021年第6期929-938,共10页
针对神经网络在进行图像着色时容易出现物体边界不明确、图像着色质量不高的问题,提出结合Pix2Pix生成对抗网络的灰度图像着色方法.首先改进U-Net结构,采用8个下采样层和8个上采样层对图像进行特征提取和颜色预测,提高网络模型对图像深... 针对神经网络在进行图像着色时容易出现物体边界不明确、图像着色质量不高的问题,提出结合Pix2Pix生成对抗网络的灰度图像着色方法.首先改进U-Net结构,采用8个下采样层和8个上采样层对图像进行特征提取和颜色预测,提高网络模型对图像深层次特征的提取能力;然后使用L_(1)损失和smoothL_(1)损失度量生成图像与真实图像之间的差距,对比不同损失函数下的图像着色质量;最后加入梯度惩罚,在生成图像和真实图像分布之间构造新的数据分布,对每个输入数据进行梯度惩罚,改变判别器网络梯度限制方法,提高网络在训练过程中的稳定性.在相同实验环境下,使用Pix2Pix模型和summer2winter数据进行对比分析.实验结果表明,改进后的U-Net和使用smooth L_(1)损失作为生成器损失可以生成更好的着色图像;而L_(1)损失能更好地保持图像结构信息,使用梯度惩罚可以加速模型的收敛速度,提高模型稳定性和图像质量;该方法能更好地学习图像的深层次特征,减少图像着色模糊现象,在有效地保持图像结构相似性的同时提高图像着色质量. 展开更多
关键词 图像着色 生成对抗网络 损失函数 梯度惩罚
下载PDF
多视野特征表示的灰度图像彩色化方法 被引量:2
3
作者 李洪安 +3 位作者 马天 张婧 李占利 康宝生 《模式识别与人工智能》 EI CSCD 北大核心 2022年第7期637-648,共12页
图像彩色化是指预测灰度图像的颜色信息,虽然使用深度学习方法可自动地对灰度图像彩色化,但对图像中不同尺度目标的彩色化质量不高,尤其是在对复杂物体和小目标物体彩色化时,存在颜色溢出、误着色和图像颜色不一致的问题.针对上述问题,... 图像彩色化是指预测灰度图像的颜色信息,虽然使用深度学习方法可自动地对灰度图像彩色化,但对图像中不同尺度目标的彩色化质量不高,尤其是在对复杂物体和小目标物体彩色化时,存在颜色溢出、误着色和图像颜色不一致的问题.针对上述问题,文中提出多视野特征表示的灰度图像彩色化方法.首先,设计多视野特征表示模块(Multi-field Feature Represented Block,MFRB),与改进的U-Net结合得到多视野特征表示U-Net.然后,将灰度图像输入U-Net中,并通过与判别器的对抗训练得到彩色图像.最后,利用VGG-19网络在不同尺度上计算图像的感知损失,提高图像彩色化结果的整体一致性.在不同类别的6个数据集上的实验表明,文中方法能有效提高彩色化图像质量,产生颜色更丰富、色调更一致的彩色图像,并在客观评价指标和主观感受上都较优. 展开更多
关键词 图像彩色化 生成对抗网络 多视野特征表示 感知损失
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部