In this Letter,we presented a flexible omnidirectional reflective film made of polymer substrates and multiple alternating layers of two chalcogenide glasses for full-angle CO_(2) laser protection.The structure parame...In this Letter,we presented a flexible omnidirectional reflective film made of polymer substrates and multiple alternating layers of two chalcogenide glasses for full-angle CO_(2) laser protection.The structure parameters of the device were simulated for theoretical prediction of best device structure.The reflector was fabricated by alternate thermal evaporation of two chalcogenide glasses with large refractive index contrast.The reflectivity was greater than 78%at 10.6μm.The flexible reflective film can provide an effective solution for full-angle CO_(2) laser protection of the moving targets,such as laser operators and mobile optical components,with potential applications for wearable laser protective clothing.展开更多
To combine the technical functions and advantages of solid-core fiber Bragg gratings(FBGs) and hollow-core optical fibers(HCFs), the hollow and filled FBGs in nano-bore optical fibers(NBFs) with nano-bore in the GeO2-...To combine the technical functions and advantages of solid-core fiber Bragg gratings(FBGs) and hollow-core optical fibers(HCFs), the hollow and filled FBGs in nano-bore optical fibers(NBFs) with nano-bore in the GeO2-doped core are proposed.The fundamental mode field, effective mode index, and confinement loss of NBF with 50 nm–7 μm-diameter hollow and filled nano-bore are numerically investigated by the finite element method.The reflected spectra of FBGs in NBFs are obtained by the transmission matrix method.The hollow FBGs in NBFs can be acheived with ~5% power fraction in the bore and the ~0.9 reflectivity when bore diameter is less than 3 μm.The filled FBGs can be realized with^1% power fraction and 0.98 reflectivity with different fillings including o-xylene, trichloroethylene, and chloroform for 800-nm bore diameter.The feasibility of the index sensing by our proposed NBF FBG is also analyzed and discussed.The experimental fabrication of hollow and filled FBGs are discussed and can be achieved by current techniques.The aim of this work is to establish a principle prototype for investigating the HCFs and solid-core FBGs-based fiber-optic platforms,which are useful for applications such as the simultaneous chemical and physical sensing at the same position.展开更多
基金supported by the National Natural Science Foundation of China(No.61875064)。
文摘In this Letter,we presented a flexible omnidirectional reflective film made of polymer substrates and multiple alternating layers of two chalcogenide glasses for full-angle CO_(2) laser protection.The structure parameters of the device were simulated for theoretical prediction of best device structure.The reflector was fabricated by alternate thermal evaporation of two chalcogenide glasses with large refractive index contrast.The reflectivity was greater than 78%at 10.6μm.The flexible reflective film can provide an effective solution for full-angle CO_(2) laser protection of the moving targets,such as laser operators and mobile optical components,with potential applications for wearable laser protective clothing.
基金Project supported by the Beijing Natural Science Foundation,China(Grant No.4192047)the Fundamental Research Funds for the Central Universities,China(Grant Nos.2018JBM070 and 2018JBM065)the National Natural Science Foundation of China(Grant No.61675019)
文摘To combine the technical functions and advantages of solid-core fiber Bragg gratings(FBGs) and hollow-core optical fibers(HCFs), the hollow and filled FBGs in nano-bore optical fibers(NBFs) with nano-bore in the GeO2-doped core are proposed.The fundamental mode field, effective mode index, and confinement loss of NBF with 50 nm–7 μm-diameter hollow and filled nano-bore are numerically investigated by the finite element method.The reflected spectra of FBGs in NBFs are obtained by the transmission matrix method.The hollow FBGs in NBFs can be acheived with ~5% power fraction in the bore and the ~0.9 reflectivity when bore diameter is less than 3 μm.The filled FBGs can be realized with^1% power fraction and 0.98 reflectivity with different fillings including o-xylene, trichloroethylene, and chloroform for 800-nm bore diameter.The feasibility of the index sensing by our proposed NBF FBG is also analyzed and discussed.The experimental fabrication of hollow and filled FBGs are discussed and can be achieved by current techniques.The aim of this work is to establish a principle prototype for investigating the HCFs and solid-core FBGs-based fiber-optic platforms,which are useful for applications such as the simultaneous chemical and physical sensing at the same position.