利用Smagorinsky亚格子湍流模型,采用大涡数值模拟方法求解可压缩流体Navier-Stokes方程,通过算子分裂分步计算,给出了适用于可压缩多介质流体界面不稳定性发展诱发湍流的计算程序MVFT(multi-viscosity-fluid and turbulent).引入耗散...利用Smagorinsky亚格子湍流模型,采用大涡数值模拟方法求解可压缩流体Navier-Stokes方程,通过算子分裂分步计算,给出了适用于可压缩多介质流体界面不稳定性发展诱发湍流的计算程序MVFT(multi-viscosity-fluid and turbulent).引入耗散界面过渡层ITL(interface transition layer)描述SF6气柱初始状态,用MVFT程序对LANL激波加载SF6气柱的激波管实验进行了数值模拟,分析了气柱的形状、流场速度以及涡的特征.计算结果表明,MVFT给出的气柱宽度、高度比RAGE的更接近于实验,气柱上游边界、下游边界和涡边界的速度与实验基本吻合,略小于RAGE的计算结果.MVFT程序的有效性得到初步检验和验证.展开更多
文摘利用Smagorinsky亚格子湍流模型,采用大涡数值模拟方法求解可压缩流体Navier-Stokes方程,通过算子分裂分步计算,给出了适用于可压缩多介质流体界面不稳定性发展诱发湍流的计算程序MVFT(multi-viscosity-fluid and turbulent).引入耗散界面过渡层ITL(interface transition layer)描述SF6气柱初始状态,用MVFT程序对LANL激波加载SF6气柱的激波管实验进行了数值模拟,分析了气柱的形状、流场速度以及涡的特征.计算结果表明,MVFT给出的气柱宽度、高度比RAGE的更接近于实验,气柱上游边界、下游边界和涡边界的速度与实验基本吻合,略小于RAGE的计算结果.MVFT程序的有效性得到初步检验和验证.