Using the Fourier helical decomposition, we obtain the absolute statistical equilibrium spectra of left- and right-handed helical modes in the incompressible ideal Hall magnetohydrodynamics (MHD). It is shown that the...Using the Fourier helical decomposition, we obtain the absolute statistical equilibrium spectra of left- and right-handed helical modes in the incompressible ideal Hall magnetohydrodynamics (MHD). It is shown that the left-handed helical modes play a major role on the spectral transfer properties of turbulence when the generalized helicity and magnetic helicity are both positive. In contrast, the right-handed helical modes will play a major role when both are negative. Furthermore, we also find that if the generalized helicity and magnetic helicity have opposite signs, the tendency of equilibrium spectra to condense at the large or small wave numbers will be presented in different helical sectors. This indicates that the generalized helicity dominates the forward cascade and the magnetic helicity dominates the inverse cascade properties of the Hall MHD turbulence.展开更多
The streamer that is driven by the specific pulse DC discharge parameters can stably form a three-dimensional helical plasma channel in a long dielectric tube in the low-temperature plasma experiment,in cases when the...The streamer that is driven by the specific pulse DC discharge parameters can stably form a three-dimensional helical plasma channel in a long dielectric tube in the low-temperature plasma experiment,in cases when there were neither external background magnetic field or other factors that destroyed the poloidal symmetry of the tube.The formation mechanism and chirality of helical streamers are discussed according to the surface electromagnetic standing wave theory.The shape of the helical streamers and the characteristics of helical branches are quantitatively analyzed to further expand the application of plasma and streamer theory in the helix problem and chiral catalytic synthesis.展开更多
By using the relativistic quantum magnetohydrodynamic model, the extraordinary electromagnetic waves in magnetized quantum plasmas are investigated with the effects of particle dispersion associated with the quantum B...By using the relativistic quantum magnetohydrodynamic model, the extraordinary electromagnetic waves in magnetized quantum plasmas are investigated with the effects of particle dispersion associated with the quantum Bohm potential effects, the electron spin-1/2 effects, and the relativistic degenerate pressure effects. The electrons are treated as a quantum and magnetized species, while the ions are classical ones. The new general dispersion relations are derived and analyzed in some interesting special cases. Quantum effects are shown to affect the dispersion relations of the extraordinary electromagnetic waves. It is also shown that the relativistic degenerate pressure effects significantly modify the dispersive properties of the extraordinary electromagnetic waves. The present investigation should be useful for understanding the collective interactions in dense astrophysical bodies,such as the atmosphere of neutron stars and the interior of massive white dwarfs.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11375190 and 11547137
文摘Using the Fourier helical decomposition, we obtain the absolute statistical equilibrium spectra of left- and right-handed helical modes in the incompressible ideal Hall magnetohydrodynamics (MHD). It is shown that the left-handed helical modes play a major role on the spectral transfer properties of turbulence when the generalized helicity and magnetic helicity are both positive. In contrast, the right-handed helical modes will play a major role when both are negative. Furthermore, we also find that if the generalized helicity and magnetic helicity have opposite signs, the tendency of equilibrium spectra to condense at the large or small wave numbers will be presented in different helical sectors. This indicates that the generalized helicity dominates the forward cascade and the magnetic helicity dominates the inverse cascade properties of the Hall MHD turbulence.
基金This work was supported by National Natural Science Foundation of China(Nos.12005061,12065019)the Natural Science Foundation of Jiangxi Province(No.20202 BABL214036).
文摘The streamer that is driven by the specific pulse DC discharge parameters can stably form a three-dimensional helical plasma channel in a long dielectric tube in the low-temperature plasma experiment,in cases when there were neither external background magnetic field or other factors that destroyed the poloidal symmetry of the tube.The formation mechanism and chirality of helical streamers are discussed according to the surface electromagnetic standing wave theory.The shape of the helical streamers and the characteristics of helical branches are quantitatively analyzed to further expand the application of plasma and streamer theory in the helix problem and chiral catalytic synthesis.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11705043,11547137 and 11605036the Innovation Training Project for College Students in Anhui Province under Grant No 2017CXCYS222+1 种基金the Doctoral Production&Learning&Research Special Fund of Hefei University of Technology under Grant No XC2015JZBZ25the Natural Science Foundation of Jiangxi Province under Grant Nos 20161BAB206156 and 20171BAB206044
文摘By using the relativistic quantum magnetohydrodynamic model, the extraordinary electromagnetic waves in magnetized quantum plasmas are investigated with the effects of particle dispersion associated with the quantum Bohm potential effects, the electron spin-1/2 effects, and the relativistic degenerate pressure effects. The electrons are treated as a quantum and magnetized species, while the ions are classical ones. The new general dispersion relations are derived and analyzed in some interesting special cases. Quantum effects are shown to affect the dispersion relations of the extraordinary electromagnetic waves. It is also shown that the relativistic degenerate pressure effects significantly modify the dispersive properties of the extraordinary electromagnetic waves. The present investigation should be useful for understanding the collective interactions in dense astrophysical bodies,such as the atmosphere of neutron stars and the interior of massive white dwarfs.