Graphene‐supported BiFeO3 (rG‐BiFeO3) was synthesized by the hydrothermal method and used for the efficient removal of ammonia under visible light. X‐ray diffraction, transmission electron microscopy,Fourier transf...Graphene‐supported BiFeO3 (rG‐BiFeO3) was synthesized by the hydrothermal method and used for the efficient removal of ammonia under visible light. X‐ray diffraction, transmission electron microscopy,Fourier transform infrared spectroscopy, Raman spectroscopy, and ultraviolet‐visiblediffuse reflectance spectroscopy were conducted to characterize the rG‐BiFeO3. The specific surfacearea of the rG‐BiFeO3 catalyst was 48.6 m2/g, larger than that of BiFeO3 (21.0 m2/g). When used as aheterogeneous photocatalyst, rG‐BiFeO3 achieved 91.20% degradation of a NH3‐N solution (50mg/L) at pH = 11 under visible‐light irradiation in the absence of hydrogen peroxide. The degradationof ammonia followed pseudo‐first‐order kinetics, and the catalyst retained high photocatalyticactivity after seven reaction cycles. Study of the mechanism showed that the holes, superoxide anion radicals, and hydroxyl radicals, arising from the synergy between graphene and BiFeO3, oxidized NH3 directly to N2.展开更多
基金supported by the National Natural Science Foundation of China (21347006, 21576175, 51478285, 51403148)the Opening Project of Key Laboratory of Jiangsu Province Environmental Science and Engineering of Suzhou University of Science and Technology (zd131205)the Collaborative Innovation Center of Technology and Material of Water Treatment~~
文摘Graphene‐supported BiFeO3 (rG‐BiFeO3) was synthesized by the hydrothermal method and used for the efficient removal of ammonia under visible light. X‐ray diffraction, transmission electron microscopy,Fourier transform infrared spectroscopy, Raman spectroscopy, and ultraviolet‐visiblediffuse reflectance spectroscopy were conducted to characterize the rG‐BiFeO3. The specific surfacearea of the rG‐BiFeO3 catalyst was 48.6 m2/g, larger than that of BiFeO3 (21.0 m2/g). When used as aheterogeneous photocatalyst, rG‐BiFeO3 achieved 91.20% degradation of a NH3‐N solution (50mg/L) at pH = 11 under visible‐light irradiation in the absence of hydrogen peroxide. The degradationof ammonia followed pseudo‐first‐order kinetics, and the catalyst retained high photocatalyticactivity after seven reaction cycles. Study of the mechanism showed that the holes, superoxide anion radicals, and hydroxyl radicals, arising from the synergy between graphene and BiFeO3, oxidized NH3 directly to N2.