期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
“艾武大模型+”:一种军事大模型系统的开发与实证
1
作者 崔翛龙 高志强 +3 位作者 姬纬通 沈佳楠 张敏 邱鑫 《数据采集与处理》 CSCD 北大核心 2024年第3期588-597,共10页
智能化指挥是新型指挥控制理论研究的重要方向,大模型是智能交互、任务规划和辅助决策等智能化指挥能力实现的重要支撑。本文兼顾理论与实践,梳理大模型军事能力需求,设计面向智能化指挥的大模型应用框架,提出“艾武大模型+”的系统架... 智能化指挥是新型指挥控制理论研究的重要方向,大模型是智能交互、任务规划和辅助决策等智能化指挥能力实现的重要支撑。本文兼顾理论与实践,梳理大模型军事能力需求,设计面向智能化指挥的大模型应用框架,提出“艾武大模型+”的系统架构、信息流程和协同架构,梳理工程实现的关键技术,以智能化指挥实证案例及选型分析验证“艾武大模型+”系统在多模态交互和特定任务军语理解的能力优势,拓展有/无人平台的末端协同和指令控制,为重大国防军事专项、智能化指挥研究与落地应用提供参考。 展开更多
关键词 军事大模型 提示工程 智能化指挥 专用语料 多模态交互
下载PDF
一种面向战术边缘的智能云服务模型
2
作者 郑会吉 邱鑫 +1 位作者 余思聪 崔翛龙 《火力与指挥控制》 CSCD 北大核心 2023年第6期7-13,共7页
针对战术边缘环境下遂行作战任务时面临资源紧张匮乏、数据处理能力弱、指挥通信时延大及相应的需求等问题,引入新兴的边缘计算技术和人工智能算法,提出一种面向战术边缘的智能云服务模型,以实现将强大云服务能力向战术边缘环境扩展,为... 针对战术边缘环境下遂行作战任务时面临资源紧张匮乏、数据处理能力弱、指挥通信时延大及相应的需求等问题,引入新兴的边缘计算技术和人工智能算法,提出一种面向战术边缘的智能云服务模型,以实现将强大云服务能力向战术边缘环境扩展,为战场终端用户提供快速、稳定、高效的信息服务和数据处理能力,分别从模型框架、功能服务、指挥控制、相关技术等方面对模型进行描述;通过仿真实例对模型进行验证分析。 展开更多
关键词 战术边缘 云服务 边缘计算 人工智能
下载PDF
联邦学习通信开销研究综述 被引量:6
3
作者 邱鑫 叶泽聪 +1 位作者 崔翛龙 高志强 《计算机应用》 CSCD 北大核心 2022年第2期333-342,共10页
为了解决数据共享需求与隐私保护要求之间不可调和的矛盾,联邦学习应运而生。联邦学习作为一种分布式机器学习,其中的参与方与中央服务器之间需要不断交换大量模型参数,而这造成了较大通信开销;同时,联邦学习越来越多地部署在通信带宽... 为了解决数据共享需求与隐私保护要求之间不可调和的矛盾,联邦学习应运而生。联邦学习作为一种分布式机器学习,其中的参与方与中央服务器之间需要不断交换大量模型参数,而这造成了较大通信开销;同时,联邦学习越来越多地部署在通信带宽有限、电量有限的移动设备上,而有限的网络带宽和激增的客户端数量会使通信瓶颈加剧。针对联邦学习的通信瓶颈问题,首先分析联邦学习的基本工作流程;然后从方法论的角度出发,详细介绍基于降低模型更新频率、模型压缩、客户端选择的三类主流方法和模型划分等特殊方法,并对具体优化方案进行深入的对比分析;最后,对联邦学习通信开销技术研究的发展趋势进行了总结和展望。 展开更多
关键词 联邦学习 通信开销 模型压缩 并行计算 客户端选择策略
下载PDF
基于元强化学习的自适应卸载方法
4
作者 郑会吉 余思聪 +1 位作者 邱鑫 崔翛龙 《电讯技术》 北大核心 2024年第2期177-183,共7页
计算卸载是移动边缘网络中的一个关键问题,基于深度学习的算法为高效生成卸载策略提供了一种解决方法。但考虑到移动终端设备的动态性以及不同任务场景之间的转换,需要大量的训练数据和较长的训练时间重新训练神经网络模型,即这些方法... 计算卸载是移动边缘网络中的一个关键问题,基于深度学习的算法为高效生成卸载策略提供了一种解决方法。但考虑到移动终端设备的动态性以及不同任务场景之间的转换,需要大量的训练数据和较长的训练时间重新训练神经网络模型,即这些方法对新环境的适应能力较弱。针对这些不足,提出了一种基于元强化学习(Meta Reinforcement Learning,MRL)的自适应卸载方法,先对外部模型进行预训练,处理具体任务时再基于外部模型训练内部模型。该方法能快速适应具有少量梯度更新的样本的新环境。仿真实验表明,该算法能够适应新的任务场景,效果良好。 展开更多
关键词 移动边缘计算(MEC) 自适应卸载 元强化学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部