Wind loads are key considerations in the structural design of large-span structures since wind loads can be more important than earthquake loads, especially for large flexible structures. The analysis of wind loads on...Wind loads are key considerations in the structural design of large-span structures since wind loads can be more important than earthquake loads, especially for large flexible structures. The analysis of wind loads on large span roof structures (LSRS) requires large amounts of calculations. Due to the com- bined effects of horizontal and vertical winds, the wind-induced vibrations of LSRS are analyzed in this pa- per with the frequency domain method as the first application of method for the analysis of the wind re- sponse of LSRS. A program is developed to analyze the wind-induced vibrations due to a combination of wind vibration modes. The program, which predicts the wind vibration coefficient and the wind pressure act- ing on the LSRS, interfaces with other finite element software to facilitate analysis of wind loads in the de- sign of LSRS. The effectiveness and accuracy of the frequency domain method have been verified by nu- merical analyses of practical projects.展开更多
A second shape finding method was developed to improve the nonlinear finite element based shape finding method. The curved shape is obtained by raising the control points above the projection plane. The convergence wa...A second shape finding method was developed to improve the nonlinear finite element based shape finding method. The curved shape is obtained by raising the control points above the projection plane. The convergence was improved using pseudo material properties to get a preliminary shape, and then using the real properties to get the final shape. A large number of examples were analyzed to verify the validity and practicality of this method. The results show that the final curved surface after the second shape finding process is always quite similar to the first one. Moreover, the curved surface obtained after the second shape finding process is accurate and will be realized in real materials.展开更多
基金Supported by the National Natural Science Foundation of China (No. 50178035)
文摘Wind loads are key considerations in the structural design of large-span structures since wind loads can be more important than earthquake loads, especially for large flexible structures. The analysis of wind loads on large span roof structures (LSRS) requires large amounts of calculations. Due to the com- bined effects of horizontal and vertical winds, the wind-induced vibrations of LSRS are analyzed in this pa- per with the frequency domain method as the first application of method for the analysis of the wind re- sponse of LSRS. A program is developed to analyze the wind-induced vibrations due to a combination of wind vibration modes. The program, which predicts the wind vibration coefficient and the wind pressure act- ing on the LSRS, interfaces with other finite element software to facilitate analysis of wind loads in the de- sign of LSRS. The effectiveness and accuracy of the frequency domain method have been verified by nu- merical analyses of practical projects.
文摘A second shape finding method was developed to improve the nonlinear finite element based shape finding method. The curved shape is obtained by raising the control points above the projection plane. The convergence was improved using pseudo material properties to get a preliminary shape, and then using the real properties to get the final shape. A large number of examples were analyzed to verify the validity and practicality of this method. The results show that the final curved surface after the second shape finding process is always quite similar to the first one. Moreover, the curved surface obtained after the second shape finding process is accurate and will be realized in real materials.