以细粒级菱镁矿(-0.074 mm)为原料,利用TG-DTG和TG-DSC热分析法对其进行非等温热分解动力学研究。结果表明:氩气气氛中,在升温速率10℃/min的条件下,细粒级菱镁矿开始分解温度为360℃,与理论值355℃接近;细粒级菱镁矿主要热分解温度...以细粒级菱镁矿(-0.074 mm)为原料,利用TG-DTG和TG-DSC热分析法对其进行非等温热分解动力学研究。结果表明:氩气气氛中,在升温速率10℃/min的条件下,细粒级菱镁矿开始分解温度为360℃,与理论值355℃接近;细粒级菱镁矿主要热分解温度范围是550~650℃,在676℃时有个最大吸热峰,此后菱镁矿分解吸收的热量逐渐减小,当煅烧温度达到720℃后,菱镁矿吸收的热量又不断增加,而在720℃后,菱镁矿的失重率没有变化,说明有明显的晶格转变在消耗能量。利用Freeman-Carroll的差减微分法对细粒级菱镁矿进行非等温热分解计算分析,得到细粒级菱镁矿的活化能E为76.989 k J/mol,指前因子A为2.36×10^5,反应级数n为2/3,因此菱镁矿热分解过程属于三维相界反应模型(R3)。展开更多
文摘以细粒级菱镁矿(-0.074 mm)为原料,利用TG-DTG和TG-DSC热分析法对其进行非等温热分解动力学研究。结果表明:氩气气氛中,在升温速率10℃/min的条件下,细粒级菱镁矿开始分解温度为360℃,与理论值355℃接近;细粒级菱镁矿主要热分解温度范围是550~650℃,在676℃时有个最大吸热峰,此后菱镁矿分解吸收的热量逐渐减小,当煅烧温度达到720℃后,菱镁矿吸收的热量又不断增加,而在720℃后,菱镁矿的失重率没有变化,说明有明显的晶格转变在消耗能量。利用Freeman-Carroll的差减微分法对细粒级菱镁矿进行非等温热分解计算分析,得到细粒级菱镁矿的活化能E为76.989 k J/mol,指前因子A为2.36×10^5,反应级数n为2/3,因此菱镁矿热分解过程属于三维相界反应模型(R3)。