【目的】针对原有布谷鸟算法在求解最优化问题时的不足,提出一种基于动态分组与高斯扰动的改进布谷鸟搜索算法(Gaussian perturbating and dynamic grouping for cuckoo search,GPDGCS)。【方法】GPDGCS算法在原有布谷鸟算法的求解过程...【目的】针对原有布谷鸟算法在求解最优化问题时的不足,提出一种基于动态分组与高斯扰动的改进布谷鸟搜索算法(Gaussian perturbating and dynamic grouping for cuckoo search,GPDGCS)。【方法】GPDGCS算法在原有布谷鸟算法的求解过程中应用了高斯扰动与动态分组策略。【结果】通过6个典型的测试函数对GPDGCS算法进行仿真实验,结果表明GPDGCS算法比原有布谷鸟算法有更高的收敛速度、求解精度等。【结论】GPDGCS算法在一定程度上可避免算法陷入局部最优。展开更多
We present a fuzzy logic controller that self-tune both scaling factors and control rules and give the simula-tion results for the second-order system.
文摘【目的】针对原有布谷鸟算法在求解最优化问题时的不足,提出一种基于动态分组与高斯扰动的改进布谷鸟搜索算法(Gaussian perturbating and dynamic grouping for cuckoo search,GPDGCS)。【方法】GPDGCS算法在原有布谷鸟算法的求解过程中应用了高斯扰动与动态分组策略。【结果】通过6个典型的测试函数对GPDGCS算法进行仿真实验,结果表明GPDGCS算法比原有布谷鸟算法有更高的收敛速度、求解精度等。【结论】GPDGCS算法在一定程度上可避免算法陷入局部最优。
文摘We present a fuzzy logic controller that self-tune both scaling factors and control rules and give the simula-tion results for the second-order system.