期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于轴箱振动与动力学模型驱动的高速列车车轮失圆状态识别方法
被引量:
1
1
作者
邓磊
鑫
谢清林
+1 位作者
陶功权
温泽峰
《机械工程学报》
EI
CAS
CSCD
北大核心
2023年第3期110-121,共12页
针对高速列车车轮失圆识别难以兼顾效率与精度问题,提出一种基于轴箱振动与动力学模型的高速列车车轮失圆状态智能识别方法。首先,利用静态检测设备采集车轮非圆原始数据,提出一种数据增强技术构建车轮非圆增强数据集。其次,将增强数据...
针对高速列车车轮失圆识别难以兼顾效率与精度问题,提出一种基于轴箱振动与动力学模型的高速列车车轮失圆状态智能识别方法。首先,利用静态检测设备采集车轮非圆原始数据,提出一种数据增强技术构建车轮非圆增强数据集。其次,将增强数据集输入至高速列车车辆—轨道耦合动力学模型,获取车轮不同失圆状态下轴箱振动样本集。最后,通过构建恰当结构与配置参数的一维卷积神经网络(1-dimensional convolutional neural network,1-DCNN),可对轴箱振动信号进行自适应特征提取,实现对车轮失圆状态的智能识别分类。结果表明:提出的车轮失圆状态智能识别方法能实现正常车轮、多边形车轮、擦伤车轮、随机非圆化车轮与局部缺陷车轮5类车轮失圆状态的智能分类,准确率达99.2%(标准差为0.05),且单个样本平均识别耗时为0.4 ms。结合现场试验,所提方法对实测轴箱振动具有较好识别能力,测试精度为95%。与经典的SVM和BP神经网络相比,1-DCNN模型具有更高的识别准确度。
展开更多
关键词
车轮失圆
车辆—轨道耦合动力学模型
轴箱振动
数据增强
一维卷积神经网络
原文传递
题名
基于轴箱振动与动力学模型驱动的高速列车车轮失圆状态识别方法
被引量:
1
1
作者
邓磊
鑫
谢清林
陶功权
温泽峰
机构
西南交通大学牵引动力国家重点实验室
出处
《机械工程学报》
EI
CAS
CSCD
北大核心
2023年第3期110-121,共12页
基金
国家自然科学基金(U21A20167)
牵引动力国家重点实验室自主课题(2020TPL-T12)资助项目
文摘
针对高速列车车轮失圆识别难以兼顾效率与精度问题,提出一种基于轴箱振动与动力学模型的高速列车车轮失圆状态智能识别方法。首先,利用静态检测设备采集车轮非圆原始数据,提出一种数据增强技术构建车轮非圆增强数据集。其次,将增强数据集输入至高速列车车辆—轨道耦合动力学模型,获取车轮不同失圆状态下轴箱振动样本集。最后,通过构建恰当结构与配置参数的一维卷积神经网络(1-dimensional convolutional neural network,1-DCNN),可对轴箱振动信号进行自适应特征提取,实现对车轮失圆状态的智能识别分类。结果表明:提出的车轮失圆状态智能识别方法能实现正常车轮、多边形车轮、擦伤车轮、随机非圆化车轮与局部缺陷车轮5类车轮失圆状态的智能分类,准确率达99.2%(标准差为0.05),且单个样本平均识别耗时为0.4 ms。结合现场试验,所提方法对实测轴箱振动具有较好识别能力,测试精度为95%。与经典的SVM和BP神经网络相比,1-DCNN模型具有更高的识别准确度。
关键词
车轮失圆
车辆—轨道耦合动力学模型
轴箱振动
数据增强
一维卷积神经网络
Keywords
wheel out-of-roundness
vehicle-track coupled dynamics model
axle box vibration
data enhancement
1-DCNN
分类号
U279 [机械工程—车辆工程]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于轴箱振动与动力学模型驱动的高速列车车轮失圆状态识别方法
邓磊
鑫
谢清林
陶功权
温泽峰
《机械工程学报》
EI
CAS
CSCD
北大核心
2023
1
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部