The adsorption behaviors of copper ions on chalcopyrite surfaces were investigated based on zeta potential measurements, X-ray photoelectron spectroscopy, copper ion adsorption experiments, first-principles calculatio...The adsorption behaviors of copper ions on chalcopyrite surfaces were investigated based on zeta potential measurements, X-ray photoelectron spectroscopy, copper ion adsorption experiments, first-principles calculations, and Hallimond tube cell flotation experiments. The results show that copper ions activate the chalcopyrite as a result of the interactions between copper ions and sulfur on the chalcopyrite surface. This adsorption increases the flotation rate under certain conditions, and this is beneficial for the flotation of chalcopyrite. The copper ions in the flotation pulp are mainly derived from surface oxidation dissolution and the release of fluid inclusions, and these effects enable chalcopyrite to be activated.展开更多
随着便携式电子产品、电动汽车领域的快速发展,高能量密度锂离子电池的需求度正在日益增加。镍含量在0.6(含)以上的高镍三元材料体系(如LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2),LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)和LiNi_(0.9)Co_(0.05)Mn_(0.05...随着便携式电子产品、电动汽车领域的快速发展,高能量密度锂离子电池的需求度正在日益增加。镍含量在0.6(含)以上的高镍三元材料体系(如LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2),LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)和LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2))在截止电压为4.3 V(vs Li^(+)/Li)的条件下,可逆比容量超过200 m Ah·g^(-1),是高比容量正极的重要发展方向。然而,多晶三元材料的机械强度和压实密度较低,且颗粒中的一次晶粒间存在各向异性,导致在充放电过程中会在多晶颗粒内产生晶间裂纹,电解液会沿晶间裂纹向颗粒内部渗透,从而加剧电极-电解液副反应、恶化电池的循环性能和安全性能。采用无晶界的单晶结构设计可以减少晶间裂纹的形成、抑制界面副反应和提高循环稳定性。本文将对单晶高镍三元材料的优势与存在问题进行综述,并对其合成方法和改性策略进行分析,最后,对单晶高镍三元材料的应用前景与面临的挑战进行评述与展望。展开更多
X-ray diffraction was used to measure the unit cell parameters of chalcopyrite crystal.The results showed that the chalcopyrite crystal is perfect,and the arrangement of its atoms is regular.A qualitative analysis of ...X-ray diffraction was used to measure the unit cell parameters of chalcopyrite crystal.The results showed that the chalcopyrite crystal is perfect,and the arrangement of its atoms is regular.A qualitative analysis of molecular mechanics showed that surface relaxation causes the chalcopyrite surface to be sulfur enriched.Atomic force microscope(AFM) was used to obtain both a microscopic three-dimensional topological map of chalcopyrite surface and a two-dimensional topological map of its electron cloud.The AFM results revealed that the horizontal and longitudinal arrangements of atoms on the chalcopyrite surface change dramatically compared with those in the interior of the crystal.Longitudinal shifts occur among the copper,iron and sulfur atoms relative to their original positions,namely,surface relaxation occurs,causing sulfur atoms to appear on the outermost surface.Horizontally,AFM spectrum showed that the interatomic distance is irregular and that a reconstruction occurs on the surface.One result of this reconstruction is that two or more atoms can be positioned sufficiently close so as to form atomic aggregates.The lattice properties of these models were calculated based on DFT theory and compared with the experimental results and those of previous theoretical works.On analyzing the results,the atomic arrangement on the(001) surface of chalcopyrite is observed to become irregular,S atoms move outward along the Z-axis,and the lengths of Cu—S and Fe—S bonds are enlarged after geometry optimization because of the surface relaxation and reconstruction.The sulfur-rich surface and irregular atomic aggregates caused by the surface relaxation and reconstruction greatly influence the bulk flotation properties of chalcopyrite.展开更多
The contents of Fe and Zn in natural sphalerite samples were determined by chemical titration and spectroscopic techniques(portable X-ray fluorescence(P-XRF) spectrometry, electron probe microanalysis with energy disp...The contents of Fe and Zn in natural sphalerite samples were determined by chemical titration and spectroscopic techniques(portable X-ray fluorescence(P-XRF) spectrometry, electron probe microanalysis with energy dispersive spectroscopy(EPMA-EDS), electron probe microanalysis with wavelength dispersive spectroscopy(EPMA-WDS), and time-of-flight secondary ion mass spectrometry(To F-SIMS)). Besides, the distribution of Fe and Zn in sphalerite samples was analyzed by imaging EPMA-WDS and imaging To F-SIMS. The results show that Fe and Zn contents determined by each spectroscopic technique have good linearity with those determined by chemical titration(R^2>0.77), and the R^2 values of Fe are generally greater than those of Zn. The imaging analysis results revealed that Fe and Zn are not uniformly distributed in the sphalerite.展开更多
基金Projects(51464029,51168020,51404119,)supported by the National Natural Science Foundation of ChinaProject(2014Y084)supported by the Natural Science Foundation of Yunnan Province Education Department,ChinaProjects(41118011,201421066)supported by the Cultivation Program of Kunming University of Science and Technology,China
文摘The adsorption behaviors of copper ions on chalcopyrite surfaces were investigated based on zeta potential measurements, X-ray photoelectron spectroscopy, copper ion adsorption experiments, first-principles calculations, and Hallimond tube cell flotation experiments. The results show that copper ions activate the chalcopyrite as a result of the interactions between copper ions and sulfur on the chalcopyrite surface. This adsorption increases the flotation rate under certain conditions, and this is beneficial for the flotation of chalcopyrite. The copper ions in the flotation pulp are mainly derived from surface oxidation dissolution and the release of fluid inclusions, and these effects enable chalcopyrite to be activated.
文摘随着便携式电子产品、电动汽车领域的快速发展,高能量密度锂离子电池的需求度正在日益增加。镍含量在0.6(含)以上的高镍三元材料体系(如LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2),LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)和LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2))在截止电压为4.3 V(vs Li^(+)/Li)的条件下,可逆比容量超过200 m Ah·g^(-1),是高比容量正极的重要发展方向。然而,多晶三元材料的机械强度和压实密度较低,且颗粒中的一次晶粒间存在各向异性,导致在充放电过程中会在多晶颗粒内产生晶间裂纹,电解液会沿晶间裂纹向颗粒内部渗透,从而加剧电极-电解液副反应、恶化电池的循环性能和安全性能。采用无晶界的单晶结构设计可以减少晶间裂纹的形成、抑制界面副反应和提高循环稳定性。本文将对单晶高镍三元材料的优势与存在问题进行综述,并对其合成方法和改性策略进行分析,最后,对单晶高镍三元材料的应用前景与面临的挑战进行评述与展望。
基金Project(u0837602) supported by the Key Program of the National Natural Science Foundation of ChinaProject(2010J056) supported by the Natural Science Foundation of Education Department of Yunnan Province,China+1 种基金Projects(2009113,2011464) supported by the Analysis and Testing Foundation of Kunming University of Science and TechnologyProject(41118011) supported by the Excellent Doctoral Dissertation to Cultivate Foundation of Kunming University of Science and Technology
文摘X-ray diffraction was used to measure the unit cell parameters of chalcopyrite crystal.The results showed that the chalcopyrite crystal is perfect,and the arrangement of its atoms is regular.A qualitative analysis of molecular mechanics showed that surface relaxation causes the chalcopyrite surface to be sulfur enriched.Atomic force microscope(AFM) was used to obtain both a microscopic three-dimensional topological map of chalcopyrite surface and a two-dimensional topological map of its electron cloud.The AFM results revealed that the horizontal and longitudinal arrangements of atoms on the chalcopyrite surface change dramatically compared with those in the interior of the crystal.Longitudinal shifts occur among the copper,iron and sulfur atoms relative to their original positions,namely,surface relaxation occurs,causing sulfur atoms to appear on the outermost surface.Horizontally,AFM spectrum showed that the interatomic distance is irregular and that a reconstruction occurs on the surface.One result of this reconstruction is that two or more atoms can be positioned sufficiently close so as to form atomic aggregates.The lattice properties of these models were calculated based on DFT theory and compared with the experimental results and those of previous theoretical works.On analyzing the results,the atomic arrangement on the(001) surface of chalcopyrite is observed to become irregular,S atoms move outward along the Z-axis,and the lengths of Cu—S and Fe—S bonds are enlarged after geometry optimization because of the surface relaxation and reconstruction.The sulfur-rich surface and irregular atomic aggregates caused by the surface relaxation and reconstruction greatly influence the bulk flotation properties of chalcopyrite.
基金Projects(51764022,51404119)supported by the National Natural Science Foundation of ChinaProject(161046)supported by Fok Ying Tong Education Foundation,ChinaProject(2018M632810)supported by China Postdoctoral Science Foundation。
文摘The contents of Fe and Zn in natural sphalerite samples were determined by chemical titration and spectroscopic techniques(portable X-ray fluorescence(P-XRF) spectrometry, electron probe microanalysis with energy dispersive spectroscopy(EPMA-EDS), electron probe microanalysis with wavelength dispersive spectroscopy(EPMA-WDS), and time-of-flight secondary ion mass spectrometry(To F-SIMS)). Besides, the distribution of Fe and Zn in sphalerite samples was analyzed by imaging EPMA-WDS and imaging To F-SIMS. The results show that Fe and Zn contents determined by each spectroscopic technique have good linearity with those determined by chemical titration(R^2>0.77), and the R^2 values of Fe are generally greater than those of Zn. The imaging analysis results revealed that Fe and Zn are not uniformly distributed in the sphalerite.