HfMgMo(3-x)WxO(12) with x = 0.5, 1.0, 1.5, 2.0, and 2.5 are developed with a simple solid state method. With increasing the content of W, solid solutions of Hf Mg Mo3-xWx O12 crystallize in an orthorhombic structu...HfMgMo(3-x)WxO(12) with x = 0.5, 1.0, 1.5, 2.0, and 2.5 are developed with a simple solid state method. With increasing the content of W, solid solutions of Hf Mg Mo3-xWx O12 crystallize in an orthorhombic structure for x≤2.0 and a monoclinic structure for x2.0. A near-zero thermal expansion(ZTE) is realized for HfMgMo(2.5)W(0.5)O(12) and negative coefficients of thermal expansion(NCTE) are achieved for other compositions with different values. The ZTE and variation of NCTE are attributed to the difference in electronegativity between W and Mo and incorporation of a different amount of W, which cause variable distortion of the octahedra and softening of the MoO4 tetrahedra, and hence an enhanced NCTE in the a- and c-axis and reduced CTE in the b-axis as revealed by Raman spectroscopy and x-ray diffraction.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.10974183 and 11104252)the Key Natural Science Project of Henan Province,China(Grant No.142102210073)+1 种基金the Doctoral Fund of the Ministry of Education of China(Grant No.20114101110003)the Fund for Science & Technology Innovation Team of Zhengzhou,China(Grant No.112PCXTD337)
文摘HfMgMo(3-x)WxO(12) with x = 0.5, 1.0, 1.5, 2.0, and 2.5 are developed with a simple solid state method. With increasing the content of W, solid solutions of Hf Mg Mo3-xWx O12 crystallize in an orthorhombic structure for x≤2.0 and a monoclinic structure for x2.0. A near-zero thermal expansion(ZTE) is realized for HfMgMo(2.5)W(0.5)O(12) and negative coefficients of thermal expansion(NCTE) are achieved for other compositions with different values. The ZTE and variation of NCTE are attributed to the difference in electronegativity between W and Mo and incorporation of a different amount of W, which cause variable distortion of the octahedra and softening of the MoO4 tetrahedra, and hence an enhanced NCTE in the a- and c-axis and reduced CTE in the b-axis as revealed by Raman spectroscopy and x-ray diffraction.