As a typical electron deficient element,beryllium is potentially suitable for designing the species with novel non-classical planar hypercoordinate carbon due to high preference for the planar structures by small bery...As a typical electron deficient element,beryllium is potentially suitable for designing the species with novel non-classical planar hypercoordinate carbon due to high preference for the planar structures by small beryllium-containing clusters.In particular,the CBe_(5)^(4–)cluster with a planar pentacoordinate carbon(ppC)had been proved by many previous studies to be an excellent template structure for the systematic design of ppC species through attaching various monovalent atoms on the bridging position of Be–Be edges.In this work,based on the analysis and extension on our recently reported CBe_(4)M_(n)^(n–2)(M=Li,Au,n=1~3)species,we propose that ptC cluster CBe_(4)^(2-)is similar to CBe54–in that it can also be employed as a template structure to systematically design the ptC species through binding various monovalent atoms on the bridging position of Be–Be edges.Our extensive screening suggests that the feasible bridging atoms(E)can be found in group 1(H,Li,Na),group 11(Cu,Ag,Au),and group 17(F,Cl,Br,I)elements,leading to total thirty eligible ptC species with CBe4 core moiety(CBe4Enn–2).The ptC atoms in these species are involved into three delocalized s bonds and a delocalized p bond,thereby not only obeying the octet rule,but also possessing novel 6s+2p double aromaticity,which significantly stabilizes the ptC arrangement.In addition,the attached bridging atoms can stabilize the CBe4 core ptC moiety by replacing the highly diffused Be–Be two-center two-electron bonds with the much less diffused Be–E two-center two-electron bonds or Be–E–Be three-center two-electron bonds,as reflected by the increasing HOMO-LUMO gaps when the number of bridging atoms increases.Remarkably,the stochastic search algorithm in combination with high level CCSD(T)calculations revealed that twenty-six of the thirty-one ptC species(including previously reported six species)were global energy minima on their corresponding potential energy surfaces,in which twenty-five of them were also confirmed to be dynamically v展开更多
本文通过对含有平面四配位氮团簇NLi_(3)E^(+)(E=N,P,As)和它们的平面四配位碳等电子体CLi_(3)E(E=N,P,As)进行详细地对比,研究了电子定域策略在设计含平面四配位氮团簇时的适应性.结果表明,NLi_(3)E^(+)团簇具有类似于CLi_(3)E的平面结...本文通过对含有平面四配位氮团簇NLi_(3)E^(+)(E=N,P,As)和它们的平面四配位碳等电子体CLi_(3)E(E=N,P,As)进行详细地对比,研究了电子定域策略在设计含平面四配位氮团簇时的适应性.结果表明,NLi_(3)E^(+)团簇具有类似于CLi_(3)E的平面结构,且其平面性都是由一个定域的π键决定的.然而,与CLi_(3)E相比,NLi_(3)E^(+)明显具有更高的电子结构稳定性、热力学稳定性和动力学稳定性,这可以从更宽的HOMO-LUMO能隙(4.58~4.68 eV vs.2.10~2.74 eV)在CCSD(T)/aug-cc-pVTZ水平下较低的能量和DFT水平下的分子动力学模拟中表现出的更好刚性得到验证.结果表明,电子定域策略可能更适合设计中心原子为较高电负性且更倾向于形成定域键的平面多配位分子.在这些团簇中,NLi_(3)E^(+)的稳定性最好,更适合进行气相合成及后续的质谱选择和光谱表征.展开更多
基金Supported by the National Natural Science Foundation of China (Nos. 21720102006, 22073058, and 21973055)the Natural Science Foundation of Shanxi Province (Nos. 201901D111018 and 201901D111014)+2 种基金the Shanxi “1331 Project” Engineering Research Center (PT201807)the Shanxi 1331KIRTthe HPC of Shanxi University
文摘As a typical electron deficient element,beryllium is potentially suitable for designing the species with novel non-classical planar hypercoordinate carbon due to high preference for the planar structures by small beryllium-containing clusters.In particular,the CBe_(5)^(4–)cluster with a planar pentacoordinate carbon(ppC)had been proved by many previous studies to be an excellent template structure for the systematic design of ppC species through attaching various monovalent atoms on the bridging position of Be–Be edges.In this work,based on the analysis and extension on our recently reported CBe_(4)M_(n)^(n–2)(M=Li,Au,n=1~3)species,we propose that ptC cluster CBe_(4)^(2-)is similar to CBe54–in that it can also be employed as a template structure to systematically design the ptC species through binding various monovalent atoms on the bridging position of Be–Be edges.Our extensive screening suggests that the feasible bridging atoms(E)can be found in group 1(H,Li,Na),group 11(Cu,Ag,Au),and group 17(F,Cl,Br,I)elements,leading to total thirty eligible ptC species with CBe4 core moiety(CBe4Enn–2).The ptC atoms in these species are involved into three delocalized s bonds and a delocalized p bond,thereby not only obeying the octet rule,but also possessing novel 6s+2p double aromaticity,which significantly stabilizes the ptC arrangement.In addition,the attached bridging atoms can stabilize the CBe4 core ptC moiety by replacing the highly diffused Be–Be two-center two-electron bonds with the much less diffused Be–E two-center two-electron bonds or Be–E–Be three-center two-electron bonds,as reflected by the increasing HOMO-LUMO gaps when the number of bridging atoms increases.Remarkably,the stochastic search algorithm in combination with high level CCSD(T)calculations revealed that twenty-six of the thirty-one ptC species(including previously reported six species)were global energy minima on their corresponding potential energy surfaces,in which twenty-five of them were also confirmed to be dynamically v
基金supported by the National Natural Foudation of China(No.21720102006 and No.22073058)the High Performance Computer Center of Shanxi University.
文摘本文通过对含有平面四配位氮团簇NLi_(3)E^(+)(E=N,P,As)和它们的平面四配位碳等电子体CLi_(3)E(E=N,P,As)进行详细地对比,研究了电子定域策略在设计含平面四配位氮团簇时的适应性.结果表明,NLi_(3)E^(+)团簇具有类似于CLi_(3)E的平面结构,且其平面性都是由一个定域的π键决定的.然而,与CLi_(3)E相比,NLi_(3)E^(+)明显具有更高的电子结构稳定性、热力学稳定性和动力学稳定性,这可以从更宽的HOMO-LUMO能隙(4.58~4.68 eV vs.2.10~2.74 eV)在CCSD(T)/aug-cc-pVTZ水平下较低的能量和DFT水平下的分子动力学模拟中表现出的更好刚性得到验证.结果表明,电子定域策略可能更适合设计中心原子为较高电负性且更倾向于形成定域键的平面多配位分子.在这些团簇中,NLi_(3)E^(+)的稳定性最好,更适合进行气相合成及后续的质谱选择和光谱表征.