We study quantum–classical correspondence in terms of the coherent wave functions of a charged particle in two- dimensional central-scalar potentials as well as the gauge field of a magnetic flux in the sense that th...We study quantum–classical correspondence in terms of the coherent wave functions of a charged particle in two- dimensional central-scalar potentials as well as the gauge field of a magnetic flux in the sense that the probability clouds of wave functions are well localized on classical orbits. For both closed and open classical orbits, the non-integer angular-momentum quantization with the level space of angular momentum being greater or less than is determined uniquely by the same rotational symmetry of classical orbits and probability clouds of coherent wave functions, which is not necessarily 2π-periodic. The gauge potential of a magnetic flux impenetrable to the particle cannot change the quantization rule but is able to shift the spectrum of canonical angular momentum by a flux-dependent value, which results in a common topological phase for all wave functions in the given model. The well-known quantum mechanical anyon model becomes a special case of the arbitrary quantization, where the classical orbits are 2π-periodic.展开更多
We study quantum classical correspondence in terms of the coherent wave functions of a charged particle in two-dimensional central-scalar potentials as well as the gauge field of a magnetic flux in the sense that the ...We study quantum classical correspondence in terms of the coherent wave functions of a charged particle in two-dimensional central-scalar potentials as well as the gauge field of a magnetic flux in the sense that the probability clouds of wave functions are well localized on classical orbits. For both closed and open classical orbits, the non-integer angular-momentum quantization with the level space of angular momentum being greater or less than h is determined uniquely by the same rotational symmetry of classical orbits and probability clouds of coherent wave functions, which is not necessarily 27r-periodic. The gauge potential of a magnetic flux impenetrable to the particle cannot change the quantization rule but is able to shift the spectrum of canonical angular momentum by a flux-dependent value, which results in a common topological phase for all wave functions in the given model. The well-known quantum mechanical anyon model becomes a special case of the arbitrary quantization, where the classical orbits are 2π-periodic.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 11075099)
文摘We study quantum–classical correspondence in terms of the coherent wave functions of a charged particle in two- dimensional central-scalar potentials as well as the gauge field of a magnetic flux in the sense that the probability clouds of wave functions are well localized on classical orbits. For both closed and open classical orbits, the non-integer angular-momentum quantization with the level space of angular momentum being greater or less than is determined uniquely by the same rotational symmetry of classical orbits and probability clouds of coherent wave functions, which is not necessarily 2π-periodic. The gauge potential of a magnetic flux impenetrable to the particle cannot change the quantization rule but is able to shift the spectrum of canonical angular momentum by a flux-dependent value, which results in a common topological phase for all wave functions in the given model. The well-known quantum mechanical anyon model becomes a special case of the arbitrary quantization, where the classical orbits are 2π-periodic.
基金supported by the National Natural Science Foundation of China (Grant No. 11075099)
文摘We study quantum classical correspondence in terms of the coherent wave functions of a charged particle in two-dimensional central-scalar potentials as well as the gauge field of a magnetic flux in the sense that the probability clouds of wave functions are well localized on classical orbits. For both closed and open classical orbits, the non-integer angular-momentum quantization with the level space of angular momentum being greater or less than h is determined uniquely by the same rotational symmetry of classical orbits and probability clouds of coherent wave functions, which is not necessarily 27r-periodic. The gauge potential of a magnetic flux impenetrable to the particle cannot change the quantization rule but is able to shift the spectrum of canonical angular momentum by a flux-dependent value, which results in a common topological phase for all wave functions in the given model. The well-known quantum mechanical anyon model becomes a special case of the arbitrary quantization, where the classical orbits are 2π-periodic.