光栅结构的设计和制作直接决定了分布反馈(DFB)半导体激光器光电特性的优劣。采用传输矩阵法模拟了不同光栅耦合因子下随机相位对均匀光栅DFB芯片特性的影响,获得了芯片的光电参数分布。通过分析耦合因子对芯片光电参数分布的影响,提...光栅结构的设计和制作直接决定了分布反馈(DFB)半导体激光器光电特性的优劣。采用传输矩阵法模拟了不同光栅耦合因子下随机相位对均匀光栅DFB芯片特性的影响,获得了芯片的光电参数分布。通过分析耦合因子对芯片光电参数分布的影响,提高了DFB芯片的成品率。设计并制备了基于Al Ga In As材料体系的脊波导DFB激光器,最终使芯片双峰比例仅为7.7%、成品率达到60%。对合格品在-40~105℃下的P-I特性和在-40~85℃下的光谱进行了测试,结果表明芯片性能优良,芯片远场发散角为25°和21°。芯片的小信号频带响应和眼图测试结果表明芯片完全满足2.5 Gbit/s的应用要求。展开更多
通过数值模拟和实验手段相结合的方法,优化了980 nm单模半导体激光器结构。给出了一种通过计算脊波导单模激光器的光场和电流场的匹配关系来预测芯片阈值电流变化规律的方法。采用金属有机物化学气相淀积方法生长了带有腐蚀停止层的Al G...通过数值模拟和实验手段相结合的方法,优化了980 nm单模半导体激光器结构。给出了一种通过计算脊波导单模激光器的光场和电流场的匹配关系来预测芯片阈值电流变化规律的方法。采用金属有机物化学气相淀积方法生长了带有腐蚀停止层的Al Ga As/In Ga As量子阱结构激光二极管外延片,通过腐蚀停止层实现了对芯片脊波导深度的精确控制,芯片的一致性显著提高。980 nm单模半导体激光器芯片的阈值电流为11 m A,在注入电流为100 m A条件下,其光功率为93 m W,快慢轴方向远场发散角分别为40°和8°。展开更多
以太无源光网络(EPON)技术应用广泛,但是要求器件的出纤光功率较高。采用球透镜结合窄发散角芯片的封装方式逐渐成为主流。在有源区为基于Al Ga In As材料体系脊波导结构的1 310 nm法布里-珀罗(FP)半导体激光器中加入模式扩展结构,成功...以太无源光网络(EPON)技术应用广泛,但是要求器件的出纤光功率较高。采用球透镜结合窄发散角芯片的封装方式逐渐成为主流。在有源区为基于Al Ga In As材料体系脊波导结构的1 310 nm法布里-珀罗(FP)半导体激光器中加入模式扩展结构,成功研制出温度特性良好、高效率、窄远场发散角的芯片。室温下芯片的阈值电流与无扩展波导结构的芯片相当,均为10 m A量级;效率达到0.6 m W/m A;远场发散角快轴为23°,慢轴为13°;85℃的阈值电流为20 m A,效率为0.55 m W/m A。该芯片可以使用低成本的晶体管外形(TO)封装技术制成,满足EPON标准的器件。展开更多
通过激光二极管速率方程模拟得出了优化芯片高频性能的基本途径,权衡直流特性和实际生产过程,对腔面反射率、腔长和量子阱结构进行了优化。建立激光二极管小信号等效电路模型,对芯片寄生网络进行了优化。测试了25-125℃下芯片的P-I特性...通过激光二极管速率方程模拟得出了优化芯片高频性能的基本途径,权衡直流特性和实际生产过程,对腔面反射率、腔长和量子阱结构进行了优化。建立激光二极管小信号等效电路模型,对芯片寄生网络进行了优化。测试了25-125℃下芯片的P-I特性,25℃时芯片的阈值电流仅为7.4 m A;芯片温度为25-45℃时,特征温度为102 K;芯片温度为105-125℃时,特征温度为57 K。在25和85℃时,激光二极管在直流偏置30 m A的3 d B频带响应分别为12.8和10.4 GHz。芯片被封装为光发射次模块(TOSA)后,-40,25和85℃下的眼图均满足10 Gbit/s光通信系统的应用要求。展开更多
文摘光栅结构的设计和制作直接决定了分布反馈(DFB)半导体激光器光电特性的优劣。采用传输矩阵法模拟了不同光栅耦合因子下随机相位对均匀光栅DFB芯片特性的影响,获得了芯片的光电参数分布。通过分析耦合因子对芯片光电参数分布的影响,提高了DFB芯片的成品率。设计并制备了基于Al Ga In As材料体系的脊波导DFB激光器,最终使芯片双峰比例仅为7.7%、成品率达到60%。对合格品在-40~105℃下的P-I特性和在-40~85℃下的光谱进行了测试,结果表明芯片性能优良,芯片远场发散角为25°和21°。芯片的小信号频带响应和眼图测试结果表明芯片完全满足2.5 Gbit/s的应用要求。
文摘通过数值模拟和实验手段相结合的方法,优化了980 nm单模半导体激光器结构。给出了一种通过计算脊波导单模激光器的光场和电流场的匹配关系来预测芯片阈值电流变化规律的方法。采用金属有机物化学气相淀积方法生长了带有腐蚀停止层的Al Ga As/In Ga As量子阱结构激光二极管外延片,通过腐蚀停止层实现了对芯片脊波导深度的精确控制,芯片的一致性显著提高。980 nm单模半导体激光器芯片的阈值电流为11 m A,在注入电流为100 m A条件下,其光功率为93 m W,快慢轴方向远场发散角分别为40°和8°。
文摘以太无源光网络(EPON)技术应用广泛,但是要求器件的出纤光功率较高。采用球透镜结合窄发散角芯片的封装方式逐渐成为主流。在有源区为基于Al Ga In As材料体系脊波导结构的1 310 nm法布里-珀罗(FP)半导体激光器中加入模式扩展结构,成功研制出温度特性良好、高效率、窄远场发散角的芯片。室温下芯片的阈值电流与无扩展波导结构的芯片相当,均为10 m A量级;效率达到0.6 m W/m A;远场发散角快轴为23°,慢轴为13°;85℃的阈值电流为20 m A,效率为0.55 m W/m A。该芯片可以使用低成本的晶体管外形(TO)封装技术制成,满足EPON标准的器件。
文摘通过激光二极管速率方程模拟得出了优化芯片高频性能的基本途径,权衡直流特性和实际生产过程,对腔面反射率、腔长和量子阱结构进行了优化。建立激光二极管小信号等效电路模型,对芯片寄生网络进行了优化。测试了25-125℃下芯片的P-I特性,25℃时芯片的阈值电流仅为7.4 m A;芯片温度为25-45℃时,特征温度为102 K;芯片温度为105-125℃时,特征温度为57 K。在25和85℃时,激光二极管在直流偏置30 m A的3 d B频带响应分别为12.8和10.4 GHz。芯片被封装为光发射次模块(TOSA)后,-40,25和85℃下的眼图均满足10 Gbit/s光通信系统的应用要求。