期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多分类支持向量机的优化算法智能推荐系统与实证分析 被引量:26
1
作者 崔建双 梦然 《计算机工程与科学》 CSCD 北大核心 2019年第1期153-160,共8页
算法智能推荐是超启发式算法研究领域一个重要分支,其目标是从众多"在线"算法中自动选择出最适于当前问题的算法,从而大大提升解决问题的效率。基于此提出并验证了一种优化算法智能推荐系统,理论依据是无免费午餐定理和Rice... 算法智能推荐是超启发式算法研究领域一个重要分支,其目标是从众多"在线"算法中自动选择出最适于当前问题的算法,从而大大提升解决问题的效率。基于此提出并验证了一种优化算法智能推荐系统,理论依据是无免费午餐定理和Rice算法选择框架,并假设问题特征与算法性能表现之间存在潜在关联关系,从而可以把算法推荐问题转换为一个多分类问题。为了验证假设的成立,以多模式资源约束项目调度问题为测试样本数据集,以粒子群、模拟退火、禁忌搜索和人工蜂群等元启发式优化算法为推荐对象,以支持向量机多分类策略实现算法的分类推荐。交叉验证结果表明,推荐准确率均在90%以上,各项评价指标表现优秀。 展开更多
关键词 算法推荐 问题特征 多分类支持向量机 多模式资源约束项目调度问题
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部