In this paper, we study the Schrodinger equations (-△)^(s)u + V(x)u = a(x)|u|^(p-2)u + b(x)|u|^(q-2)u, x∈R^(N),where 0 < s < 1, 2 < q < p < 2_(s)^(*), 2_(s)^(*) is the fractional Sobolev critical expo...In this paper, we study the Schrodinger equations (-△)^(s)u + V(x)u = a(x)|u|^(p-2)u + b(x)|u|^(q-2)u, x∈R^(N),where 0 < s < 1, 2 < q < p < 2_(s)^(*), 2_(s)^(*) is the fractional Sobolev critical exponent. Under suitable assumptions on V, a and b for which there may be no ground state solution, the existence of positive solutions are obtained via variational methods.展开更多
基金supported by the NNSF of China(12171014, 12271539, 12171326)the Beijing Municipal Commission of Education (KZ202010028048)the Research Foundation for Advanced Talents of Beijing Technology and Business University (19008022326)。
文摘In this paper, we study the Schrodinger equations (-△)^(s)u + V(x)u = a(x)|u|^(p-2)u + b(x)|u|^(q-2)u, x∈R^(N),where 0 < s < 1, 2 < q < p < 2_(s)^(*), 2_(s)^(*) is the fractional Sobolev critical exponent. Under suitable assumptions on V, a and b for which there may be no ground state solution, the existence of positive solutions are obtained via variational methods.