针对传统高斯混合模型(GMM,Gaussian mixture model)难以自动获取类属数和对噪声敏感问题,提出了一种基于可变类空间约束GMM的遥感图像分割方法。首先在构建的GMM中,将像素类属性建模为马尔可夫随机场(MRF,Markov random field),并在此...针对传统高斯混合模型(GMM,Gaussian mixture model)难以自动获取类属数和对噪声敏感问题,提出了一种基于可变类空间约束GMM的遥感图像分割方法。首先在构建的GMM中,将像素类属性建模为马尔可夫随机场(MRF,Markov random field),并在此基础上定义其先验概率;结合邻域像素类属性的后验概率和先验概率,定义噪声平滑因子,以提高算法的抗噪性;在参数求解过程中,分别采用可逆跳变马尔可夫链蒙特卡罗(RJMCMC,reversible jump Markov chain Monte Carlo)方法和最大似然(ML,maximum likelihood)方法估计类属数和模型参数;最后以最小化噪声平滑因子为准则获取最终分割结果。为了验证提出的分割方法,分别对模拟图像和全色遥感图像进行了可变类分割实验。实验结果表明提出方法的可行性和有效性。展开更多
基于区域和统计的SAR分割方法,提出一种结合Voronoi划分技术、最大期望值EM(Expectation Maximization)和最大边缘概率MPM(Maximization of the Posterior Marginal)算法的多视SAR图像分割方法。首先利用Voronoi划分将图像域划分成不同...基于区域和统计的SAR分割方法,提出一种结合Voronoi划分技术、最大期望值EM(Expectation Maximization)和最大边缘概率MPM(Maximization of the Posterior Marginal)算法的多视SAR图像分割方法。首先利用Voronoi划分将图像域划分成不同的子区域,而每个子区域可以被看成待分割同质区域的一个组成部分,并假设每个子区域内的像素满足同一独立的Gamma分布,从而建立多视SAR图像模型,并在贝叶斯理论架构下建立图像分割模型,然后结合EM/MPM算法进行图像分割和模型参数估计。该方法将基于像元的马尔可夫随机场(Markov Random Field,MRF)模型扩展到基于区域的MRF模型,并且能同时有效地获取模型参数估计和基于区域的SAR图像最优分割。采用本文算法,分别对RADARSAT-Ⅰ/ⅡSAR强度图像和合成SAR强度图像进行了分割实验,定性和定量的测试结果验证了本文方法的有效性、可靠性和准确性。展开更多
传统激光雷达(light detection and ranging,LiDAR)数据处理均采用固定数的波形分解方法,容易遗漏部分重叠的返回波,降低波形拟合精度。为了实现可变数波形分解,本文提出了一种自动确定波形分解数的方法。假定波形数据服从混合高斯分布...传统激光雷达(light detection and ranging,LiDAR)数据处理均采用固定数的波形分解方法,容易遗漏部分重叠的返回波,降低波形拟合精度。为了实现可变数波形分解,本文提出了一种自动确定波形分解数的方法。假定波形数据服从混合高斯分布,并以此建立理想的波形模型;定义用于控制理想模型与实际波形拟合程度的能量函数,用吉布斯分布构建或然率;根据贝叶斯定理构建刻画波形分解的后验概率模型;设计可逆跳转马尔科夫链蒙特卡洛(reversible jump Markov chain Monte Carlo,RJMCMC)算法模拟该后验概率模型,以确定波形分解数并同时完成波形分解。为了验证提出算法的正确性,分别对不同区域的ICESat-GLAS波形数据进行了波形分解试验,定性和定量分析结果验证了本文方法的有效性、可靠性和准确性。展开更多
文摘基于区域和统计的SAR分割方法,提出一种结合Voronoi划分技术、最大期望值EM(Expectation Maximization)和最大边缘概率MPM(Maximization of the Posterior Marginal)算法的多视SAR图像分割方法。首先利用Voronoi划分将图像域划分成不同的子区域,而每个子区域可以被看成待分割同质区域的一个组成部分,并假设每个子区域内的像素满足同一独立的Gamma分布,从而建立多视SAR图像模型,并在贝叶斯理论架构下建立图像分割模型,然后结合EM/MPM算法进行图像分割和模型参数估计。该方法将基于像元的马尔可夫随机场(Markov Random Field,MRF)模型扩展到基于区域的MRF模型,并且能同时有效地获取模型参数估计和基于区域的SAR图像最优分割。采用本文算法,分别对RADARSAT-Ⅰ/ⅡSAR强度图像和合成SAR强度图像进行了分割实验,定性和定量的测试结果验证了本文方法的有效性、可靠性和准确性。
文摘传统激光雷达(light detection and ranging,LiDAR)数据处理均采用固定数的波形分解方法,容易遗漏部分重叠的返回波,降低波形拟合精度。为了实现可变数波形分解,本文提出了一种自动确定波形分解数的方法。假定波形数据服从混合高斯分布,并以此建立理想的波形模型;定义用于控制理想模型与实际波形拟合程度的能量函数,用吉布斯分布构建或然率;根据贝叶斯定理构建刻画波形分解的后验概率模型;设计可逆跳转马尔科夫链蒙特卡洛(reversible jump Markov chain Monte Carlo,RJMCMC)算法模拟该后验概率模型,以确定波形分解数并同时完成波形分解。为了验证提出算法的正确性,分别对不同区域的ICESat-GLAS波形数据进行了波形分解试验,定性和定量分析结果验证了本文方法的有效性、可靠性和准确性。