期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于经验模态分解与投资者情绪的Attention-BiLSTM股价趋势预测模型 被引量:2
1
作者 林旭东 翁晓健 《计算机应用》 CSCD 北大核心 2023年第S01期112-118,共7页
股票价格的变动是投资者在股票市场关注的焦点,所以股价趋势预测一直是量化投资研究的热门话题。传统的机器学习预测模型难以处理非线性、高频率、高噪声的股价时间序列,使得股票价格趋势的预测精度低。为了提高预测精度,针对股票价格... 股票价格的变动是投资者在股票市场关注的焦点,所以股价趋势预测一直是量化投资研究的热门话题。传统的机器学习预测模型难以处理非线性、高频率、高噪声的股价时间序列,使得股票价格趋势的预测精度低。为了提高预测精度,针对股票价格数据的时序性特征,提出用结合经验模态分解(EMD)、投资者情绪和注意力机制的双向长短期记忆神经网络来对股票价格进行涨跌预测。首先使用经验模态分解算法提取股票价格时间序列在不同时间尺度上的特征,并通过构建金融情感词典来提取上一个股票交易日收盘后至下一个交易日开盘前文本的投资者情绪指标,最后使用注意力机制优化的BiLSTM模型对下一个股票交易日进行涨跌预测。在股票价格序列的数据集上进行实验,结果表明,改进后的BiLSTM模型较改进前的BiLSTM模型,准确率从58.50%提升至71.26%;预测为涨的精确率从58.20%提升至70.06%,预测为跌的精确率从59.34%提升至72.36%;预测为涨的召回率从59.85%提升至73.41%,预测为跌的召回率从57.73%提升至69.11%;预测为涨的F1值从58.60%提升至71.61%,预测为跌的F1值从58.08%提升至70.53%;最终通过与长短期记忆(LSTM)网络、基于Attention机制的LSTM(Attention-LSTM)、支持向量机(SVM)、极端梯度提升(XGBoost)等4种典型的股价涨跌预测模型结果对比,验证了所提模型的准确有效性。 展开更多
关键词 双向长短期记忆神经网络 注意力机制 经验模态分解 投资者情绪 股票涨跌预测
下载PDF
基于经验模态分解与投资者情绪的长短期记忆网络股票价格涨跌预测模型 被引量:3
2
作者 翁晓健 林旭东 《计算机应用》 CSCD 北大核心 2022年第S02期296-301,共6页
针对传统的基于统计学的回归股票预测模型难以表征多个变量之间的关系,预测出的股票价格趋势误差较大,提出一种基于经验模态分解(EMD)与投资者情绪的长短期记忆(LSTM)神经网络股票价格涨跌预测模型。首先,将股票收盘价通过EMD分解得到... 针对传统的基于统计学的回归股票预测模型难以表征多个变量之间的关系,预测出的股票价格趋势误差较大,提出一种基于经验模态分解(EMD)与投资者情绪的长短期记忆(LSTM)神经网络股票价格涨跌预测模型。首先,将股票收盘价通过EMD分解得到若干个具有不同时间尺度的局部特征信号的本征模函数(IMF);其次,通过引入改进的股票领域情感词典,对东方财富网股吧的帖子,进行上一个股票交易日收盘后和下一个股票交易日开盘前的投资者情感分析,得到下一个股票交易日的投资者情绪指标;最后,将基础的股票基本行情数据、经过EMD得到的IMF以及投资者情绪指标加入LSTM神经网络预测下一个交易日的股票涨跌。仿真实验结果表明,在2019年1月至2021年9月的牧原股份(002714)股票数据上,与单独使用LSTM模型相比,改进后的LSTM模型的预测准确率提高了12.25个百分点,在预测为涨的F1值和预测为跌的F1值上分别提高了1.2个百分点和25.21个百分点。由此可见,基于EMD与投资者情绪的LSTM股票价格涨跌预测模型有效提高了预测精度,为股票市场的涨跌预测提供了一种有效的实验方法。 展开更多
关键词 股票预测模型 机器学习 投资者情绪 经验模态分解 长短期记忆神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部