Changes of extreme events due to greenhouse effects (2 × CO<SUB>2</SUB>) over East Asia, with a focus on the China region as simulated by a regional climate model (RegCM2), are investigated. The model...Changes of extreme events due to greenhouse effects (2 × CO<SUB>2</SUB>) over East Asia, with a focus on the China region as simulated by a regional climate model (RegCM2), are investigated. The model is nested to a global coupled ocean-atmosphere model (CSIRO R21L9 AOGCM). Analysis of the control run of the regional model indicates that it can reproduce well the extreme events in China. Statistically significant changes of the events are analyzed. Results show that both daily maximum and daily minimum temperature increase in 2 × CO<SUB>2</SUB> conditions, while the diurnal temperature range decreases. The number of hot spell days increases while the number of cold spell days decreases. The number of rainy days and heavy rain days increases over some sub-regions of China. The 2 × CO<SUB>2</SUB> conditions also cause some changes in the tropical storms affecting China.展开更多
This article summarizes the main results and findings of studies conducted by Chinese scientists in the past five years. It is shown that observed climate change in China bears a strong similarity with the global aver...This article summarizes the main results and findings of studies conducted by Chinese scientists in the past five years. It is shown that observed climate change in China bears a strong similarity with the global average. The country-averaged annual mean surface air temperature has increased by 1.1℃ over the past 50 years and 0.5-0.8℃ over the past 100 years, slightly higher than the global temperature increase for the same periods. Northern China and winter have experienced the greatest increases in surface air temperature. Although no significant trend has been found in country-averaged annual precipitation, interdecadal variability and obvious trends on regional scales are detectable, with northwestern China and the mid and lower Yangtze River basin having undergone an obvious increase, and North China a severe drought. Some analyses show that frequency and magnitude of extreme weather and climate events have also undergone significant changes in the past 50 years or so. Studies of the causes of regional climate change through the use of climate models and consideration of various forcings, show that the warming of the last 50 years could possibly be attributed to an increased atmospheric concentration of greenhouse gases, while the temperature change of the first half of the 20th century may be due to solar activity, volcanic eruptions and sea surface temperature change. A significant decline in sunshine duration and solar radiation at the surface in eastern China has been attributed to the increased emission of pollutants. Projections of future climate by models of the NCC (National Climate Center, China Meteorological Administration) and the IAP (Institute of Atmospheric Physics, Chinese Academy of Sciences), as well as 40 models developed overseas, indicate a potential significant warming in China in the 21st century, with the largest warming set to occur in winter months and in northern China. Under varied emission scenarios, the country-averaged annual mean temperature is projected to incre展开更多
基金Thanks are due to CSIRO in Australia and the Institute of Botany,Chinese Academy of Sciences,National Climate Center of China , for providing the data sets of the GCM and the vegetation coverThis research was supported by the National Natural Science Foundation of China under Grant No, 40125014National Key Programme for Developing Basic Sciences (G1998040900-part 1).
文摘Changes of extreme events due to greenhouse effects (2 × CO<SUB>2</SUB>) over East Asia, with a focus on the China region as simulated by a regional climate model (RegCM2), are investigated. The model is nested to a global coupled ocean-atmosphere model (CSIRO R21L9 AOGCM). Analysis of the control run of the regional model indicates that it can reproduce well the extreme events in China. Statistically significant changes of the events are analyzed. Results show that both daily maximum and daily minimum temperature increase in 2 × CO<SUB>2</SUB> conditions, while the diurnal temperature range decreases. The number of hot spell days increases while the number of cold spell days decreases. The number of rainy days and heavy rain days increases over some sub-regions of China. The 2 × CO<SUB>2</SUB> conditions also cause some changes in the tropical storms affecting China.
文摘This article summarizes the main results and findings of studies conducted by Chinese scientists in the past five years. It is shown that observed climate change in China bears a strong similarity with the global average. The country-averaged annual mean surface air temperature has increased by 1.1℃ over the past 50 years and 0.5-0.8℃ over the past 100 years, slightly higher than the global temperature increase for the same periods. Northern China and winter have experienced the greatest increases in surface air temperature. Although no significant trend has been found in country-averaged annual precipitation, interdecadal variability and obvious trends on regional scales are detectable, with northwestern China and the mid and lower Yangtze River basin having undergone an obvious increase, and North China a severe drought. Some analyses show that frequency and magnitude of extreme weather and climate events have also undergone significant changes in the past 50 years or so. Studies of the causes of regional climate change through the use of climate models and consideration of various forcings, show that the warming of the last 50 years could possibly be attributed to an increased atmospheric concentration of greenhouse gases, while the temperature change of the first half of the 20th century may be due to solar activity, volcanic eruptions and sea surface temperature change. A significant decline in sunshine duration and solar radiation at the surface in eastern China has been attributed to the increased emission of pollutants. Projections of future climate by models of the NCC (National Climate Center, China Meteorological Administration) and the IAP (Institute of Atmospheric Physics, Chinese Academy of Sciences), as well as 40 models developed overseas, indicate a potential significant warming in China in the 21st century, with the largest warming set to occur in winter months and in northern China. Under varied emission scenarios, the country-averaged annual mean temperature is projected to incre