Applying the improved Rayleigh SchrSdinger perturbation theory based on an integral equation to helium-like ions in ground states and treating electron correlations as perturbations, we obtain the second-order correct...Applying the improved Rayleigh SchrSdinger perturbation theory based on an integral equation to helium-like ions in ground states and treating electron correlations as perturbations, we obtain the second-order corrections to wavefunctions consisting of a few terms and the third-order corrections to energicity. It is demonstrated that the corrected wavefunctions are bounded and quadratically integrable, and the corresponding perturbation series is convergent. The results clear off the previous distrust for the convergence in the quantum perturbation theory and show a reciprocal development on the quantum perturbation problem of the ground state helium-like systems.展开更多
基金supported by the National Natural Science Foundation of China (Grant No 10575034)the Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics of China (Grant No T152504)
文摘Applying the improved Rayleigh SchrSdinger perturbation theory based on an integral equation to helium-like ions in ground states and treating electron correlations as perturbations, we obtain the second-order corrections to wavefunctions consisting of a few terms and the third-order corrections to energicity. It is demonstrated that the corrected wavefunctions are bounded and quadratically integrable, and the corresponding perturbation series is convergent. The results clear off the previous distrust for the convergence in the quantum perturbation theory and show a reciprocal development on the quantum perturbation problem of the ground state helium-like systems.