期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
面向位置大数据的快速密度聚类算法 被引量:32
1
作者 于彦伟 +3 位作者 曹磊 赵金东 刘兆伟 刘惊雷 《软件学报》 EI CSCD 北大核心 2018年第8期2470-2484,共15页
面向位置大数据聚类,提出了一种简单但高效的快速密度聚类算法CBSCAN,以快速发现位置大数据中任意形状的聚类簇模式和噪声.首先,定义了Cell网格概念,并提出了基于Cell的距离分析理论,利用该距离分析,无需距离计算,可快速确定高密度区域... 面向位置大数据聚类,提出了一种简单但高效的快速密度聚类算法CBSCAN,以快速发现位置大数据中任意形状的聚类簇模式和噪声.首先,定义了Cell网格概念,并提出了基于Cell的距离分析理论,利用该距离分析,无需距离计算,可快速确定高密度区域的核心点和密度相连关系;其次,给出了网格簇定义,将基于位置点的密度簇映射成基于网格的密度簇,利用排他网格与相邻网格的密度关系,可快速确定网格簇的包含网格;第三,利用基于Cell的距离分析理论和网格簇概念,实现了一个快速密度聚类算法,将DBSCAN基于数据点的密度扩展聚类转换成基于Cell的密度扩展聚类,极大地减少高密度区域的距离计算,利用位置数据的内在特性提高了聚类效率;最后,在基准测试数据上验证了所提算法的聚类效果,在位置大数据上的实验结果统计显示,与DBSCAN、PR-Tree索引和Grid索引优化的DBSCAN相比,CBSCAN分别平均提升了525倍、30倍和11倍效率. 展开更多
关键词 聚类分析 密度聚类 位置大数据 Cell网格 网格簇
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部