期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度学习的耳部穴区自动分割方法 被引量:1
1
作者 高枕岳 +3 位作者 李青峰 芦东昕 张森 肖文栋 《生物医学工程学杂志》 EI CAS 北大核心 2024年第1期114-120,共7页
耳部穴区的自动分割是实现智能化耳穴疗法的基础。然而,由于耳部穴区较多,且缺乏清晰的边界特征,现有方案在自动分割耳穴时面临着挑战。因此,需要一种快速准确的耳部穴区自动分割方法。本研究提出了一种基于深度学习的耳部穴区自动分割... 耳部穴区的自动分割是实现智能化耳穴疗法的基础。然而,由于耳部穴区较多,且缺乏清晰的边界特征,现有方案在自动分割耳穴时面临着挑战。因此,需要一种快速准确的耳部穴区自动分割方法。本研究提出了一种基于深度学习的耳部穴区自动分割方法,主要包含耳部轮廓检测、解剖部位分割及关键点估计和图像后处理三个阶段。本文还提出了K-YOLACT以提升解剖部位分割及关键点定位的运行效率。实验结果表明,所提出的方法实现了对耳部正面图像内66个穴区的自动分割,分割效果优于现有方案。同时K-YOLACT方法的解剖部位分割的平均精度均值(mAP)为83.2%,关键点定位平均精度均值为98.1%,且运行效率明显提升。该方法的提出为耳穴图像的精确分割提供了可靠的解决方案,也为中医疗法的现代化发展提供了强有力的技术支持。 展开更多
关键词 深度学习 耳穴疗法 区域分割 图像处理 中医
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部