期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
遥测数据驱动的无人机飞行状态识别方法
被引量:
16
1
作者
贺
思
捷
刘大同
彭宇
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2016年第9期2004-2013,共10页
无人机飞行状态的识别是无人机飞行状态分析必要的基础,可为无人机任务调度、智能维护维修和设计优化提供参考信息。无人机的遥测数据是对其飞行状态识别的重要依据,针对无人机遥测数据量大、各飞行状态持续时间不同、数据混有噪声、无...
无人机飞行状态的识别是无人机飞行状态分析必要的基础,可为无人机任务调度、智能维护维修和设计优化提供参考信息。无人机的遥测数据是对其飞行状态识别的重要依据,针对无人机遥测数据量大、各飞行状态持续时间不同、数据混有噪声、无法直接提供飞行意图信息等问题,提出一种基于切比雪夫特征提取和随机森林分类(Chebyshev-random forest,C-RF)算法的无人机状态识别方法。采用Chebyshev拟合法对遥测数据进行特征提取和降维,利用随机森林算法实现飞行状态的自适应分类。所提出方法将Chebyshev拟合系数计算简单、接近最佳拟合的优点与随机森林算法的训练速度快、分类准确率高和抗噪能力强等优点相结合,可覆盖无人机的各类样本且避免过拟合问题,实现了无人机飞行状态的有效识别。采用真实无人机遥测数据进行验证,总体识别准确率高于90%,少类样本亦可被准确识别,证明了所提出方法的有效性和实用性。
展开更多
关键词
无人机
飞行状态
状态识别
Chebyshev拟合
随机森林
下载PDF
职称材料
题名
遥测数据驱动的无人机飞行状态识别方法
被引量:
16
1
作者
贺
思
捷
刘大同
彭宇
机构
哈尔滨工业大学电气工程及自动化学院
出处
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2016年第9期2004-2013,共10页
基金
国家自然科学基金(61571160)
部委重点基金课题(9140A17050114HT01054)项目资助
文摘
无人机飞行状态的识别是无人机飞行状态分析必要的基础,可为无人机任务调度、智能维护维修和设计优化提供参考信息。无人机的遥测数据是对其飞行状态识别的重要依据,针对无人机遥测数据量大、各飞行状态持续时间不同、数据混有噪声、无法直接提供飞行意图信息等问题,提出一种基于切比雪夫特征提取和随机森林分类(Chebyshev-random forest,C-RF)算法的无人机状态识别方法。采用Chebyshev拟合法对遥测数据进行特征提取和降维,利用随机森林算法实现飞行状态的自适应分类。所提出方法将Chebyshev拟合系数计算简单、接近最佳拟合的优点与随机森林算法的训练速度快、分类准确率高和抗噪能力强等优点相结合,可覆盖无人机的各类样本且避免过拟合问题,实现了无人机飞行状态的有效识别。采用真实无人机遥测数据进行验证,总体识别准确率高于90%,少类样本亦可被准确识别,证明了所提出方法的有效性和实用性。
关键词
无人机
飞行状态
状态识别
Chebyshev拟合
随机森林
Keywords
unmanned aerial vehicle
flight mode
flight mode recognition
Chebyshev fitting
random forest
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
TH701 [自动化与计算机技术—计算机科学与技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
遥测数据驱动的无人机飞行状态识别方法
贺
思
捷
刘大同
彭宇
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2016
16
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部