针对基础含有多自由度的特点,在复杂风浪载荷下风电机组更容易产生剧烈的结构载荷的问题,该文建立含风浪载荷的动力学模型与蚁狮算法配合,寻求机舱中调谐质量阻尼器(Tuned Mass Damper,TMD)各参数最优解。首先,基于拉格朗日方程建立含...针对基础含有多自由度的特点,在复杂风浪载荷下风电机组更容易产生剧烈的结构载荷的问题,该文建立含风浪载荷的动力学模型与蚁狮算法配合,寻求机舱中调谐质量阻尼器(Tuned Mass Damper,TMD)各参数最优解。首先,基于拉格朗日方程建立含风浪载荷的动力学模型,采用Levenberg-Marquardt(LM)算法分别对动力学模型未知参数和风浪载荷参数进行辨识;其次,采用蚁狮算法和含风浪载荷的动力学模型配合对TMD各参数同时寻优;最后,在5种典型工况下,利用FAST全耦合模型验证TMD的减载效果。结果显示,优化参数后的TMD能有效降低漂浮式风电机组关键部位疲劳载荷。对比有无TMD时,叶根纵向弯矩降低约10%~30%,叶根纵向剪力降低了约10%~35%,塔基纵向弯矩降低了约10%~45%。展开更多
文摘针对基础含有多自由度的特点,在复杂风浪载荷下风电机组更容易产生剧烈的结构载荷的问题,该文建立含风浪载荷的动力学模型与蚁狮算法配合,寻求机舱中调谐质量阻尼器(Tuned Mass Damper,TMD)各参数最优解。首先,基于拉格朗日方程建立含风浪载荷的动力学模型,采用Levenberg-Marquardt(LM)算法分别对动力学模型未知参数和风浪载荷参数进行辨识;其次,采用蚁狮算法和含风浪载荷的动力学模型配合对TMD各参数同时寻优;最后,在5种典型工况下,利用FAST全耦合模型验证TMD的减载效果。结果显示,优化参数后的TMD能有效降低漂浮式风电机组关键部位疲劳载荷。对比有无TMD时,叶根纵向弯矩降低约10%~30%,叶根纵向剪力降低了约10%~35%,塔基纵向弯矩降低了约10%~45%。