期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
三维小样本元学习模型的大豆食心虫虫害高光谱检测
被引量:
5
1
作者
桂江生
费
婧
怡
傅霞萍
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2021年第7期2171-2174,共4页
为降低大豆食心虫对大豆产量以及品质的影响,实现对大豆食心虫虫害的快速检测,提出了一种基于三维关系网络小样本元学习(3D-RN)模型的大豆食心虫虫害的检测方法。首先分别对附着虫卵的,附着食心虫幼虫的,被啃食的及正常的大豆各20颗进...
为降低大豆食心虫对大豆产量以及品质的影响,实现对大豆食心虫虫害的快速检测,提出了一种基于三维关系网络小样本元学习(3D-RN)模型的大豆食心虫虫害的检测方法。首先分别对附着虫卵的,附着食心虫幼虫的,被啃食的及正常的大豆各20颗进行高光谱图像采集,提取感兴趣区,建立基于高光谱图像的3D-RN模型。最终模型的正确率达82%±2.50%。对比与模型无关的元学习和匹配网络元学习模型,3D-RN模型能够充分度量样本特征间的距离,识别效果大大提升。研究表明,基于高光谱图像的3D-RN模型能够在少量样本情况下实现对大豆食心虫虫害的检测,将小样本元学习与高光谱结合的方法为虫害检测提供一种新思路。
展开更多
关键词
虫害检测
大豆食心虫
高光谱
卷积神经网络
小样本元学习
三维
下载PDF
职称材料
题名
三维小样本元学习模型的大豆食心虫虫害高光谱检测
被引量:
5
1
作者
桂江生
费
婧
怡
傅霞萍
机构
浙江理工大学信息学院
浙江理工大学机械与自动控制学院
出处
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2021年第7期2171-2174,共4页
基金
国家重点研发计划项目(2016YFD0700203)
浙江省自然科学基金项目(LY20C130008)资助。
文摘
为降低大豆食心虫对大豆产量以及品质的影响,实现对大豆食心虫虫害的快速检测,提出了一种基于三维关系网络小样本元学习(3D-RN)模型的大豆食心虫虫害的检测方法。首先分别对附着虫卵的,附着食心虫幼虫的,被啃食的及正常的大豆各20颗进行高光谱图像采集,提取感兴趣区,建立基于高光谱图像的3D-RN模型。最终模型的正确率达82%±2.50%。对比与模型无关的元学习和匹配网络元学习模型,3D-RN模型能够充分度量样本特征间的距离,识别效果大大提升。研究表明,基于高光谱图像的3D-RN模型能够在少量样本情况下实现对大豆食心虫虫害的检测,将小样本元学习与高光谱结合的方法为虫害检测提供一种新思路。
关键词
虫害检测
大豆食心虫
高光谱
卷积神经网络
小样本元学习
三维
Keywords
Pest detection
Leguminivora glycinivorella
Hyperspectral
Convolutional neural network
Few-shot meta-learning
Three-dimensional
分类号
S435.29 [农业科学—农业昆虫与害虫防治]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
三维小样本元学习模型的大豆食心虫虫害高光谱检测
桂江生
费
婧
怡
傅霞萍
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2021
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部