为将图像处理技术更好地应用在智能交通中,发挥立体图像质量评价方法的作用,提出一种融合2D和3D卷积神经网络(convolutional neural network,CNN)的立体图像质量评价方法。该模型结合2D-CNN与3D-CNN两个通道;将独眼图输入2D-CNN通道,提...为将图像处理技术更好地应用在智能交通中,发挥立体图像质量评价方法的作用,提出一种融合2D和3D卷积神经网络(convolutional neural network,CNN)的立体图像质量评价方法。该模型结合2D-CNN与3D-CNN两个通道;将独眼图输入2D-CNN通道,提取双目竞争相关特征;将左视图、右视图、和图像和差图像输入3D-CNN通道,通过3D卷积提取双目之间联系的相关特征;应用全连接层,将两个通道提取的特征融合并进行回归分析构建关系模型。在公开的LIVE 3D PhaseⅠ和LIVE 3D PhaseⅡ上的实验结果表明,所提方法与人类的主观感知保持高度一致。展开更多
文摘为将图像处理技术更好地应用在智能交通中,发挥立体图像质量评价方法的作用,提出一种融合2D和3D卷积神经网络(convolutional neural network,CNN)的立体图像质量评价方法。该模型结合2D-CNN与3D-CNN两个通道;将独眼图输入2D-CNN通道,提取双目竞争相关特征;将左视图、右视图、和图像和差图像输入3D-CNN通道,通过3D卷积提取双目之间联系的相关特征;应用全连接层,将两个通道提取的特征融合并进行回归分析构建关系模型。在公开的LIVE 3D PhaseⅠ和LIVE 3D PhaseⅡ上的实验结果表明,所提方法与人类的主观感知保持高度一致。