To improve the performance of LiFePO4, single phase Li1-4xTixFePO4/C (x=0, 0.005, 0.010, 0.015) cathodes were synthesized by solid-state method. A certain content of glucose was used as carbon precursor and content of...To improve the performance of LiFePO4, single phase Li1-4xTixFePO4/C (x=0, 0.005, 0.010, 0.015) cathodes were synthesized by solid-state method. A certain content of glucose was used as carbon precursor and content of carbon in every final product was about 3.5%. The samples were characterized by X-ray diffraction(XRD), scanning electron microscopy observations(SEM), charge/discharge test, carbon analysis and electrochemical impedance spectroscopy(EIS). The results indicate that the prepared samples have ordered olivine structure and doping of the low concentration Ti^(4+) does not affect the structure of the samples. The electrochemical capabilities evaluated by charge-discharge test show that the sample with 1% Ti^(4+) (molar fraction) has good electrochemical performance delivering about an initial specific capacity of 146.7 mA·h/g at 0.3C rate. Electrochemical impedance spectroscopy measurement results show that the charge transfer resistance of the sample could be decreased greatly by doping an appropriate amount Ti^(4+).展开更多
LiFePO4/C composite was synthesized by high temperature solid-state reaction using iron(Ⅱ) oxalate, ammonium di-hydrogen phosphate and lithium carbonate with a kind of carbohydrate dissolved in the dispersant(etha...LiFePO4/C composite was synthesized by high temperature solid-state reaction using iron(Ⅱ) oxalate, ammonium di-hydrogen phosphate and lithium carbonate with a kind of carbohydrate dissolved in the dispersant(ethanol) as carbon sources added to the synthetic precursor. The samples were characterized by X-ray diffraction(XRD), scanning electron microscopy observations(SEM), charge/discharge test, cyclic voltammetry(CV) and carbon analysis. The results show that the synthesis of LiFePO4/C has ordered olivine structure. The carbon has two advantages: optimizing particle size of LiFePO4 and increasing the electronic conductivity and high Li+ diffusivity. The cathode material can demonstrate a charge/discharge flat voltage of 3.4V(vs Li+/Li). Especially the active material with 15% and 20% carbohydrate added according to the final product of lithium iron phosphate shows very good electrochemical performance delivering about initial 150.2mA·h·g-1 and 162.0mA·h·g-1 specific capacity respectively at 0.1C rate and the carbon contents in the final production are only 5.17% and 5.29%, respectively.展开更多
LiFePO4 was prepared by heating the pre-decomposed precursor mixtures sealed in vacuum quartz-tube. Three kinds of cooling modes including nature cooling, air quenching, and water quenching were applied to comparing t...LiFePO4 was prepared by heating the pre-decomposed precursor mixtures sealed in vacuum quartz-tube. Three kinds of cooling modes including nature cooling, air quenching, and water quenching were applied to comparing the effects of cooling modes on the microstructure and electrochemical characteristics of the material. The results indicate that the water quenching mode can control overgrowth of the grain size of final product and improve its electrochemical performance compared with nature cooling mode and air quenching mode. The sample synthesized by using water quenching mode is of the highest reversible discharge specific capacity and the best cyclic electrochemical performance, demonstrating the first discharge capacity of 138.1 mA·h/g at 0.1C rate and the total loss of capacity of 3.11% after 20 cycles.展开更多
A technique of combination of vacuum firing and water quenching was applied to the synthesis of LiFePO4 powder. The sample was prepared by heating the pre-decomposed precursor mixtures sealed in vacuum quartz-tube, fo...A technique of combination of vacuum firing and water quenching was applied to the synthesis of LiFePO4 powder. The sample was prepared by heating the pre-decomposed precursor mixtures sealed in vacuum quartz-tube, followed by water quenching at the sintering temperature. The synthetic conditions were optimized by orthogonal experiment. The results indicate that the fast quenching treatment can avoid the overgrowth of single crystal and improve its availability ratio of active material. The sintering temperature has the greatest effect on the electrochemical performance of sample. Next is the molar ratio of Li to Fe and the sintering time, respectively. The samples prepared in the optimized technical condition has the highest reversible discharge specific capacity of 149.8 mA·h/g.展开更多
基金Project(04JJ0388) supported by the National Science Foundation of Hunan Province, China
文摘To improve the performance of LiFePO4, single phase Li1-4xTixFePO4/C (x=0, 0.005, 0.010, 0.015) cathodes were synthesized by solid-state method. A certain content of glucose was used as carbon precursor and content of carbon in every final product was about 3.5%. The samples were characterized by X-ray diffraction(XRD), scanning electron microscopy observations(SEM), charge/discharge test, carbon analysis and electrochemical impedance spectroscopy(EIS). The results indicate that the prepared samples have ordered olivine structure and doping of the low concentration Ti^(4+) does not affect the structure of the samples. The electrochemical capabilities evaluated by charge-discharge test show that the sample with 1% Ti^(4+) (molar fraction) has good electrochemical performance delivering about an initial specific capacity of 146.7 mA·h/g at 0.3C rate. Electrochemical impedance spectroscopy measurement results show that the charge transfer resistance of the sample could be decreased greatly by doping an appropriate amount Ti^(4+).
基金Project(04JJ0388) supported by the Natural Science Foundation of Hunan Province , China
文摘LiFePO4/C composite was synthesized by high temperature solid-state reaction using iron(Ⅱ) oxalate, ammonium di-hydrogen phosphate and lithium carbonate with a kind of carbohydrate dissolved in the dispersant(ethanol) as carbon sources added to the synthetic precursor. The samples were characterized by X-ray diffraction(XRD), scanning electron microscopy observations(SEM), charge/discharge test, cyclic voltammetry(CV) and carbon analysis. The results show that the synthesis of LiFePO4/C has ordered olivine structure. The carbon has two advantages: optimizing particle size of LiFePO4 and increasing the electronic conductivity and high Li+ diffusivity. The cathode material can demonstrate a charge/discharge flat voltage of 3.4V(vs Li+/Li). Especially the active material with 15% and 20% carbohydrate added according to the final product of lithium iron phosphate shows very good electrochemical performance delivering about initial 150.2mA·h·g-1 and 162.0mA·h·g-1 specific capacity respectively at 0.1C rate and the carbon contents in the final production are only 5.17% and 5.29%, respectively.
基金Project(50604018) supported by the National Natural Science Foundation of China
文摘LiFePO4 was prepared by heating the pre-decomposed precursor mixtures sealed in vacuum quartz-tube. Three kinds of cooling modes including nature cooling, air quenching, and water quenching were applied to comparing the effects of cooling modes on the microstructure and electrochemical characteristics of the material. The results indicate that the water quenching mode can control overgrowth of the grain size of final product and improve its electrochemical performance compared with nature cooling mode and air quenching mode. The sample synthesized by using water quenching mode is of the highest reversible discharge specific capacity and the best cyclic electrochemical performance, demonstrating the first discharge capacity of 138.1 mA·h/g at 0.1C rate and the total loss of capacity of 3.11% after 20 cycles.
基金Project(50604018) supported by the National Natural Science Foundation of China
文摘A technique of combination of vacuum firing and water quenching was applied to the synthesis of LiFePO4 powder. The sample was prepared by heating the pre-decomposed precursor mixtures sealed in vacuum quartz-tube, followed by water quenching at the sintering temperature. The synthetic conditions were optimized by orthogonal experiment. The results indicate that the fast quenching treatment can avoid the overgrowth of single crystal and improve its availability ratio of active material. The sintering temperature has the greatest effect on the electrochemical performance of sample. Next is the molar ratio of Li to Fe and the sintering time, respectively. The samples prepared in the optimized technical condition has the highest reversible discharge specific capacity of 149.8 mA·h/g.